Basis Expansion and Nonlinear SVM

Kai Yu
Linear Classifiers

$z(x) = \text{sign}(f(x))$

• Help to learn more general cases, e.g., nonlinear models

$f(x) = w^\top x + b$
Nonlinear Classifiers via Basis Expansion

\[f(x) = w^\top h(x) + b \]

\[z(x) = \text{sign}(f(x)) \]

- Nonlinear basis functions \(h(x) = [h_1(x), h_2(x), \ldots, h_m(x)] \)

- \(f(x) = w^\top x + b \) is a special case where \(h(x) = x \)

- This explains a lot of classification models, including SVMs.
Outline

- Representation theorem
- Kernel trick
- Understand regularization
- Nonlinear logistic regression
- General basis expansion functions
- Summary
Review the QP for linear SVMs

- After a lot of "stuff", we obtain the Lagrange dual

\[L_D = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{i'=1}^{N} \alpha_i \alpha_i' y_i y_i' x_i^T x_i' \]

- The solution has the form

\[w = \sum_{i=1}^{N} \alpha_i y_i x_i \]

- In other words, the solution \(w \) is in

\[\text{span}(x_1, x_2, \ldots, x_N) \]
A more general result – RKHS representation theorem (Wahba, 1971)

- In its simplest form, $L(w^T x, y)$ is convex w.r.t. w, the solution of

$$
\min_w \sum_{i=1}^{N} L(w^T x_i, y_i) + \lambda \|w\|^2
$$

has the form

$$
w = \sum_{i=1}^{N} \alpha_i x_i
$$

- Proof sketch …
- Note: the conclusion is general, not only for SVMs.
For general basis expansion functions

The solution of

$$\min_w \sum_{i=1}^{N} L(w^\top h(x_i), y_i) + \lambda \|w\|^2$$

has the form

$$w = \sum_{i=1}^{N} \alpha_i h(x_i)$$
Outline

- Representation theorem
- **Kernel trick**
- Understand regularization
- Nonlinear logistic regression
- General basis expansion functions
- Summary
Define the Mercer kernel as

\[k(x_i, x_j) = h(x_i)^\top h(x_j) \]
Kernel trick

- Apply the representation theorem

\[w = \sum_{i=1}^{N} \alpha_i h(x_i) \]

- we have

\[f(x) = \sum_{i=1}^{N} \alpha_i k(x_i, x) \quad \|w\|^2 = \sum_{i,j=1}^{N} \alpha_i \alpha_j k(x_i, x_j) = \alpha^T K \alpha \]

\[\min_{\alpha} \sum_{i=1}^{N} L \left(\sum_{i=1}^{N} \alpha_i k(x_i, x), y_i \right) + \lambda \alpha^T K \alpha \]
Primal and Kernel formulations

\[
\min_w \sum_{i=1}^{N} L \left(w^\top h(x), y_i \right) + \lambda \| w \|^2
\]

\[
k(x_i, x_j) = h(x_i)^\top h(x_j)
\]

\[
\min_\alpha \sum_{i=1}^{N} L \left(\sum_{i=1}^{N} \alpha_i k(x_i, x), y_i \right) + \lambda \alpha^\top K \alpha
\]

- Given a kernel, we don’t even need \(h(x) \)! …really?
Popular kernels

- \(k(x,x') \) is a symmetric, positive (semi-) definite function

 \[d \text{th deg. poly.: } K(x, x') = (1 + \langle x, x' \rangle)^d \]

 \[\text{radial basis: } K(x, x') = \exp(-\|x - x'\|^2/c) \]

- **Example:**

 \[K(x, x') = (1 + \langle x, x' \rangle)^2 \]

 \[= (1 + x_1 x'_1 + x_2 x'_2)^2 \]

 \[= 1 + 2x_1 x'_1 + 2x_2 x'_2 + (x_1 x'_1)^2 + (x_2 x'_2)^2 + 2x_1 x'_1 x_2 x'_2 \]

 \[h_1(x) = 1, h_2(x) = \sqrt{2}x_1, h_3(x) = \sqrt{2}x_2, h_4(x) = x_1^2, h_5(x) = x_2^2, \]

 and \(h_6(x) = \sqrt{2}x_1 x_2 \),
Non-linear feature mapping

- Datasets that are linearly separable

- But what if the dataset is just too hard?

- How about mapping data to a higher-dimensional space:
Nonlinear feature mapping

- General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

\[h: \mathbf{x} \rightarrow h(\mathbf{x}) \]
Outline

- Representation theorem
- Kernel trick
- Understand regularization
- Nonlinear logistic regression
- General basis expansion functions
- Summary
Various equivalent formulations

- **Parametric form**

\[
\min_w \sum_{i=1}^{N} L \left(w^\top h(x), y_i \right) + \lambda \|w\|^2
\]

- **Dual form**

\[
\min_\alpha \sum_{i=1}^{N} L \left(\sum_{i=1}^{N} \alpha_i k(x_i, x), y_i \right) + \lambda \alpha^\top K \alpha
\]

- **Nonparametric form**

\[
\min_f \sum_{i=1}^{N} L(f(x_i), y_i) + \lambda \|f\|_{\mathcal{H}_K}^2
\]
Various equivalent formulations

- **Parametric form**

\[
\min_w \sum_{i=1}^{N} L \left(w^\top h(x), y_i \right) + \lambda \|w\|^2
\]

- **Dual form**

\[
\min_{\alpha} \sum_{i=1}^{N} L \left(\sum_{i=1}^{N} \alpha_i k(x_i, x), y_i \right) + \lambda \alpha^\top K \alpha
\]

- **Nonparametric form**

\[
\min_f \sum_{i=1}^{N} L(f(x_i), y_i) + \lambda \|f\|^2_{H_k}
\]

Telling what kind of \(f(x) \) is preferred.
Regularization induced by kernel (or basis functions)

Eigen expansion: \[K(x, y) = \sum_{i=1}^{\infty} \gamma_i \phi_i(x) \phi_i(y) \]

\[f(x) = \sum_{i=1}^{\infty} c_i \phi_i(x) \]

- Desired kernel is a smoothing operator, smoother eigenfunctions \(\phi_i \) tend to have larger eigenvalues \(\gamma_i \)

\[\|f\|_{\mathcal{H}_K}^2 \overset{\text{def}}{=} \sum_{i=1}^{\infty} c_i^2 / \gamma_i \]

- What does this mean?
Understand regularization

- If push down this regularization term

\[\| f \|_{\mathcal{H}_K}^2 \overset{\text{def}}{=} \sum_{i=1}^{\infty} \frac{c_i^2}{\gamma_i} \]

- In \(f(x) \), minor components \(\phi_i(x) \) with smaller \(\gamma_i \) are penalized more heavily. \(\Rightarrow \) principle components are preferred in \(f(x) \)!

- A desired kernel is a smoothing operator, i.e., principle components are smoother functions \(\Rightarrow \) the regularization encourages \(f(x) \) to be smooth!
Understanding regularization

\[\| f \|_{\mathcal{H}_K}^2 \overset{\text{def}}{=} \sum_{i=1}^{\infty} \frac{c_i^2}{\gamma_i} \]

- Using what kernel?
- Using what feature (for linear model)?
- Using what \(h(x) \)?
- Using what functional norm \(\| f \|_{\mathcal{H}_K}^2 \)

All pointing to one thing – what kind of functions are preferred \textit{apriori}
Outline

- Representation theorem
- Kernel trick
- Understand regularization
- **Nonlinear logistic regression**
- General basis expansion functions
- Summary
Nonlinear Logistic Regression

So far, things we discussed, including

- representation theorem,
- kernel trick,
- regularization,

are not limited to SVMs. They are all applicable to logistic regression. The only difference is the loss function.
Nonlinear Logistic Regression

- **Parametric form**

 \[
 \min_{f} \sum_{i=1}^{N} \ln \left(1 + e^{-y_i w^\top h(x_i)} \right) + \lambda \| w \|^2
 \]

- **Nonparametric form**

 \[
 \min_{f} \sum_{i=1}^{N} \ln \left(1 + e^{-y_i f(x_i)} \right) + \lambda \| f \|^2_{\mathcal{H}_k}
 \]
Logistic Regression vs. SVM

- Both can be linear or nonlinear, parametric or nonparametric, the main difference is the loss;

- They are very similar in performance;

- Outputs probabilities, useful for scoring confidence;

- Logistic regression is easier for multiple classes.

- 10 years ago, one was old, the other is new. Now, both are old.
Outline

- Representation theorem
- Kernel trick
- Understand regularization
- Nonlinear logistic regression
- General basis expansion functions
- Summary
Many known classification models follow a similar structure

- Neural networks
- RBF networks
- Learning VQ (LVQ)
- Boosting

These models all learn w and $h(x)$ together …
Many known classification models follow a similar structure

- Neural networks
- RBF networks
- Learning VQ (LVQ)
- Boosting
- SVMs
- Linear Classifier
- Logistic Regression
- ...

8/7/12
Develop your own stuff!

By deciding

- Which loss function? – hinge, least square, …
- What form of \(h(x) \)? – RBF, logistic, tree, …
- Infinite \(h(x) \) or \(h(x) \)?
- Learning \(h(x) \) or not?
- How to optimize? – QP, LBFGS, functional gradient, …

you can obtain various classification algorithms.
Parametric vs. nonparametric models

- $h(x)$ is finite dim, **parametric** model $f(x) = w^T h(x)$. Training complexity is $O(Nm^3)$

- $h(x)$ is nonlinear and infinite dim, then has to use **kernel trick**. This is a **nonparametric** model. The training complexity is around $O(N^3)$

- Nonparametric models, including kernel SVMs, Gaussian processes, Dirichlet processes etc., are elegant in math, but nontrivial for large-scale computation.
Outline

- Representation theorem
- Kernel trick
- Understand regularization
- Nonlinear logistic regression
- General basis expansion functions
- Summary
Summary

- Representation theorem and kernels
- Regularization prefers principle eigenfunctions of the kernel (induced by basis functions)
- Basis expansion - a general framework for classification models, e.g., nonlinear logistic regression, SVMs, …