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A Bayesian Network Approach to
Traffic Flow Forecasting

Shiliang Sun, Changshui Zhang, Member, IEEE, and Guogiang Yu

Abstract—A new approach based on Bayesian networks for
traffic flow forecasting is proposed. In this paper, traffic flows
among adjacent road links in a transportation network are mod-
eled as a Bayesian network. The joint probability distribution
between the cause nodes (data utilized for forecasting) and the
effect node (data to be forecasted) in a constructed Bayesian
network is described as a Gaussian mixture model (GMM) whose
parameters are estimated via the competitive expectation max-
imization (CEM) algorithm. Finally, traffic flow forecasting is
performed under the criterion of minimum mean square error
(mmse). The approach departs from many existing traffic flow
forecasting models in that it explicitly includes information from
adjacent road links to analyze the trends of the current link
statistically. Furthermore, it also encompasses the issue of traf-
fic flow forecasting when incomplete data exist. Comprehensive
experiments on urban vehicular traffic flow data of Beijing and
comparisons with several other methods show that the Bayesian
network is a very promising and effective approach for traf-
fic flow modeling and forecasting, both for complete data and
incomplete data.

Index Terms—Bayesian network, expectation maximization
algorithm, Gaussian mixture model, traffic flow forecasting.

I. INTRODUCTION

RBAN traffic control systems (UTCSs) and freeway man-
U agement systems around the world are collecting large
amount of traffic condition data every day. Typical data in-
clude volume, flow rate, occupancy, and speed. Development
of systems that put these data to good use for traffic control and
management has become an active area of ongoing transporta-
tion research, which is usually referred to as Intelligent Trans-
portation Systems (ITS) [1]. In the research area of ITS, traffic
flow forecasting is a very important issue. Reliable analysis of
historical trends of traffic flows is an important input to many
of the traffic management and control systems in operation and
under development. Some well-known systems, such as the
Split Cycle Offset Optimization Technique (SCOQOT) system
and the Sydney Coordinated Adaptive Traffic (SCAT) system,
integrated the traffic flow forecasting function as fundamental
modules. Without an effective forecasting capability, these sys-
tems would not operate smoothly.
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In this paper, we concentrate on the problem of short-term
traffic flow rate forecasting, which is to determine the traffic
condition data in the next time interval, usually in the range
of 5 min to half an hour. During the past decades, some
approaches ranging from simple to complex are proposed for
traffic flow forecasting. Simple ones, such as random walk
(RW, which is informed only by the current traffic condition),
historical average (whose prediction is solely based on the
average of all corresponding observed flow rates), and informed
historical average (which combines the above two ideas), can
only work well in specific situations [1]. One class of the
complex approaches, UTCS prediction method, is based on
forecasting philosophies similar to the above methods [1]. The
first generation of UTCS prediction method relied heavily on
historical data, which would bring along similar drawbacks as
the historical average method; although the philosophies behind
UTCS-2 and UTCS-3 prediction are simple, the forecasting
methods are highly complex. There are also other elaborate
methods including approaches based on time series models
(including ARIMA, seasonal ARIMA) [1]-[3], Kalman filter
theory [4], neural network approaches [5], nonparametric meth-
ods [6], simulation models [7], local regression models [8], [9],
layered models known as the ATHENA model [10] and the
KARIMA model [11], fuzzy-neural approach [12], and Markov
chain model [13].

Although these methods have alleviated difficulties in traffic
modeling and forecasting to some extent, from a careful review
we can still find a problem, that is, most of them have not made
good use of information from adjacent roads to analyze the
trends of the object road. Some approaches did not even use
data from adjacent road links at all. Although Chang et al. [14]
utilized data from other roadways to make judgmental adjust-
ments, the information was still not used to its full poten-
tial. Yin et al. [12] developed a fuzzy-neural model (FNM)
to predict traffic flows in an urban street network that only
utilizes upstream flows in the current time interval to forecast
the selected downstream flow in the next interval. However,
in order to forecast as precisely as possible, information from
adjacent (mainly, upstream) roads and the current road should
be considered all together, as some researchers advised.

Another drawback of the existing approaches mentioned
above is that they hardly work when the data used for fore-
casting are incomplete (partially missing or unavailable). The
incomplete data can be caused by malfunctions or measurement
errors in data collection and recording systems, such as failed
loop detectors, faulty loop amplifiers, or signal communication
and processing errors (the situation of data abnormality caused
by incidents/accidents does not belong to the incomplete data
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case, since the data are not incomplete, but abnormal). Al-
though the historical average method (filling up the incomplete
data with their historical average values) is often adopted to
cope with this issue, the forecasting accuracy is quite limited.
There has not been a general well-defined approach for incom-
plete data forecasting yet. Therefore, developing an approach to
work in case of incomplete data is of great demand.

The Bayesian network approach, as studied comprehensively
in the communities of statistical analysis, artificial intelligence,
and machine learning, gives us some inspiration on the theme
of traffic flow forecasting. Bayesian networks can fully take
into account the causal relationship between random variables
statistically, and thus can be employed to model and analyze
traffic flows among upstream and downstream road links. From
the standpoint of Bayesian networks, the value of an object
node can be inferred by its neighbor nodes. Furthermore, fore-
casting in case of incomplete data is also possible based on
the message passing mechanism of Bayesian networks. In this
article, we focus on using Bayesian networks to carry out traffic
flow modeling and forecasting. Experiments with encouraging
results show that this approach is applicable and considerably
effective for traffic flow modeling and forecasting both for
complete data and incomplete data.

The remainder of the article is organized as follows. After
introducing Bayesian networks and some related issues in
Section II, we respectively describe the model construction
mechanism and experiment results for complete data and in-
complete data forecasting in Sections III and IV. Finally,
Section V concludes the paper and discusses some directions
of future work.

II. BAYESIAN NETWORKS

In a transportation network, information from other road
links would be helpful to forecast traffic flow at the current
link. However, it is very hard to directly describe the influence
of traffic flows at all the other links to the traffic flow at the
current one, since there would be too many variables to be
determined in order to access this relationship. Although there
exist direct or indirect relations among different road links,
one usually assumes that, given the traffic flows (including
the flows at the current and previous intervals) at adjacent
links, the traffic flows at the other links are independent of the
traffic flow at the current one. In this way, the relation among
the studied road links could be simplified. The methodology
of Bayesian networks also accords with this postulation of
conditional independence. The advantage of this assumption is
that the scale of the prediction model can be reduced by cutting
down the number of cause nodes in a Bayesian network. As
a result, given limited training data, we can estimate the joint
probability distribution among all nodes more accurately with a
smaller network, and thus get a more precise representation of
prediction relations.

A Bayesian network, also known as a causal model, is a
directed graphical model for representing conditional indepen-
dencies between a set of random variables. It is a marriage
between probability theory and graph theory, and provides a
natural tool for dealing with two problems that occur through

125

applied mathematics and engineering—uncertainty and com-
plexity [15]. In a Bayesian network, an arc from node A to B
can be informally interpreted as indicating that A “causes” B
[16]. The simplest statement of conditional independence re-
lationships encoded in a Bayesian network can be stated as
follows: a node is independent of its ancestors given its parents,
where the ancestor/parent relationship is with respect to some
fixed topological ordering of the nodes [16]. Therefore, for a
Bayesian network consisting of n nodes (random variables)
(z1,22,...,2,), we have the representation for the joint prob-
ability distribution

n

vzn) = [ [ p(@ilzp)

i=1

6]

p(z1,x2,. ..

where p(z;|x p,) is the local conditional probability distribution
associated with node ¢ and F; is the set of indices labeling the
parents of node i (P; can be empty if node ¢ has no parents)
[15]. The conditional independence relationship allows us to
represent the joint probability distribution more compactly and
conveniently, especially for large-scale networks. This would
both benefit parameter estimation and variable forecasting
when used to practical problems. In addition, since our traffic
flow forecasting is a problem related to vehicle flows of time
series, the Bayesian network model should consider the time
factor of traffic flows as well. The intuition that some vehicle
flows can cause other vehicle flows in the future temporally and
in the downstream spatially indicates the design of Bayesian
networks for traffic flows: Directed arcs should flow forward
both in time direction and in flow direction.

A. Representation and Parameter Estimation of Joint
Probability Distribution

Before performing traffic flow forecasting in a Bayesian
network, one should first derive the joint probability distribution
between input and output. In this paper, we adopt Gaussian
mixture model (GMM), a weighted combination of several
normal distribution functions, to approximate the joint proba-
bility distribution in Bayesian networks. The benefits of GMM
involve at least three aspects: 1) many events or phenom-
ena in the natural world per se obey Gaussian distributions;
2) the Gaussian function has its convenience in mathematical
deduction, which can be seen below; 3) one can approximate
an arbitrary probability distribution with the combination of a
sufficient number of Gaussian distributions. To formulate, let
denote a random variable or a multidimensional random vector,
and then the GMM representation of its probability distribution
with M mixture components be described as

M
p(z0) =Y aipi(x|6)) 2)
1=1
where the parameters are © = (a1,...,aa,601,...,05) and

M, s.t. Zf\il oy = 1 [17]. Each p;(-) is a Gaussian probability
density function parameterized by 0; = (u;,%;),l =1,..., M.

Usually, maximum likelihood estimation (MLE) can be used
to implement parameter estimation when given a training data
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set. However, the analytical solutions of the parameters in
GMM cannot be obtained by traditional MLE methods. The
expectation maximization (EM) algorithm is an iterative
method to carry out MLE [18]. It makes up for the disadvantage
of traditional MLE methods that usually need to derive the
analytical expressions of solutions. The applications of the EM
algorithm mainly include two scenarios. The first occurs when
the data indeed have hidden parameters, due to problems such
as limitations of the observation process. The other occurs when
optimizing the likelihood function is analytically intractable,
but can be simplified by assuming the existence of values for
additional but hidden parameters [18]. The latter one is more
common in practice.

Suppose X be the observed data set generated by some
distribution. We assume that a complete data set Z = (X,Y")
exists and the joint distribution of the corresponding random
variable/vector z = (x, y) has the form

p(210©) = p(z,y|0) = p(y|z, ©)p(x|O) 3)

where Y is the hidden data set and O is the parameter set
governing the distribution p(z|©). Via the E-step and M-step
of EM algorithm, our objective becomes to seek

(1) — (i-1)
oY% = arg mgXQ (@, © ) 4)

where Q(0,007Y) = E,[log p(X,Y|0)|X,00~V] [18]. EM
algorithm is guaranteed to converge at local maximums of the
corresponding likelihood function. The iterative equations to
obtain the estimate of the new parameters in (2) in terms of
the old parameters are given as

N
1 i
o = N Zp (l|:1ci, el 1))
i=1
Y @ip (I, ©0D)
Zﬁilp (”Ih@ﬁfl))

SV p (U, 00D (@ — o) (a; — o)’
S p (I, ©6-D)

new __
i =

new __
El —_—

&)

atl=1,..., M, where N is the size of data set X [18].
However, in the EM algorithm, M is a predetermined pa-
rameter and the algorithm may converge to a local maximum
or the boundary of the parameter space. To find a global
maximum is more desirable in most cases. As an extension of
the basic EM algorithm, the recently proposed competitive EM
(CEM) algorithm overcomes these drawbacks [19]. The CEM
algorithm, which includes (5) as a subroutine, is capable of
automatically choosing the number of mixing components M
and selecting the “split” or “merge” operations efficiently based
on some competitive mechanism. Another good characteristic

is that it is insensitive to the initial configurations of the number
of the mixture components and model parameters. Considering
these virtues, in this article, the parameters of a GMM that
describe the joint probability distribution of the cause nodes
and effect nodes in a Bayesian network are estimated through
the CEM algorithm.

B. Prediction Formulation for GMM

In our work, traffic flow forecasting is regarded as an in-
ference problem in a Bayesian network. The main goal of
inference in Bayesian networks is to estimate the values of
target nodes given the values of the observed nodes. As can
be seen below, the prediction formulation for the GMM is very
concise, which is a desirable property for applications.

Let (E, F') be a partitioning of the node indices of a Bayesian
network into disjoint subsets and (2, zz) be a partitioning of
the corresponding random variables/vectors. Then, the marginal
probability of g can be formulated as

p(zp) = Zp(l‘E,ﬂ?F)- (6)

Thus, according to Bayesian theory [20], the conditional prob-
ability p(zp|xg) is equal to

. _p(iUF,xE) N p(rr,xzp)
plerles) = p(zE) 7Eme(9CE,J?F) @

which can be readily computed for any xr once the denomi-
nator is computed by a marginalization computation. For traffic
flow forecasting, we can use observation xp to forecast xp.
Under the rule of minimum mean square error (mmse), the
optimal estimation of z can be given as [21]

tp = E(zplzg). )

To deduce the specific representation of the optimal forecasting
2 under the GMM framework, we first introduce the following
lemma given in [22].

Lemma 1: Let G(x; 1, %) denote a multidimensional nor-
mal density function with mean p and covariance matrix .

If we rewrite them as 2" = (z{,25), ' = (u{,ug), and

Y1 Yo
M=
<221

) , then p(x) can be described as
Yoo
p(z) = G(w1; p1, X11) G (225 Mg |ay s Daglar ) )

where

Mgolz, = M2 — 221Ef11(/t1 — 1)

Yiale, = 222 — Y1211 S1a. (10)
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Fig. 1.
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(a) Patch taken from the East Section of the Third Circle of Beijing City Map where UTC/SCOOT systems are placed. For convenience, roads and flows

are coded with English characters. (b) Bayesian network between the current link and its adjacent links for road link K.

If we define =" = (zp,xp), 1 = (Wp, ), and ¥; =
<EZFF YiFE

Yier YiEE
lemma, (2) can be rewritten as

) with the GMM framework and the above

p(zr,zE) = ) aG(z;w, %)

M=

Il
—

s

aG(rp; e, Yiee)G(TF; e, SiFE)-

1

1)

According to (7), the conditional probability density function
p(zp|xg) can be represented as

M

plzrlze) = ZﬁzG(l”F; MF|E> ZiF|E) (12)

=1
where
5 = A?ZG(J?E; ME, LIEE)
> =1 4G (xE; e, BiER)
tr e = wr — SireS pp (e — TE)
SiriE =SirF — SirES ppliEF. (13)

Thus, optimal forecasting Z under the criterion of mmse
can be derived as

TF ZE(JCF|1‘E)

= /pr(mF\IE) dxp

M
= Zﬁz/xFG(xF;MmE,ElF\E)dxF
=1

M
=Y Buure (14)
=1

where 3, and j;p g have the same meanings as above. We
can see that, with the GMM formulation, the forecasting
relationship between the input and the output in a Bayesian
network is rather concise, which is very convenient for practical
applications.

III. MODEL CONSTRUCTION AND EXPERIMENTS
FOR COMPLETE DATA

A. Modeling Mechanism and Flow Chart

Fig. 1(a) shows a patch taken from one urban traffic map
of highways. Each circle node in the sketch map denotes a
road link. An arrow shows the direction of traffic flow, which
reaches the corresponding road link from its upstream link.
Paths without arrows are of no traffic flow records. We take
vehicle flow data K, as an instance to show our modeling
mechanism. K, represents the vehicle flow from upstream link
H to downstream link K. From the view point of Bayesian
networks, vehicle flows of H; and H; should have causal
relations with vehicle flow of K,. Furthermore, considering
the time factor, to predict the vehicle flow of K, at time ¢
[denoted by K, (t)], we should use values K, (t — 1), K, (t —
2),..., K,(t — d) as well, since these values imply some trend
of K, (t). That is, the historical values of H;, H;, and K, should
all be regarded as the cause nodes of K,(t) in a Bayesian
network. From the aspect of forecasting, the cause nodes serve
as the input and the effect node K, (t) serves as the output. The
constructed Bayesian network model is given in Fig. 1(b).

The flow chart of the forecasting procedure can be concluded
as follows. 1) Construct a Bayesian network model between the
input (cause nodes) and the output (effect node) for a chosen
traffic flow on a given road link. 2) Approximate the joint
probability distribution of all nodes in the constructed network
by GMM using the CEM algorithm explained in Section II-A.
3) Carry out the optimal estimation of traffic flow of the current
link in the form of (14).

Usually, the dimension of the joint probability distribu-
tion using Bayesian networks is high, and the available data
are comparatively not enough, since there are many nodes
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to describe. Therefore, this might decrease the accuracy of
the sequent parameter estimation. In Section III-B, we will
illustrate the relationship of the size of training data and
the forecasting error on the same test data for given road
links. However, if we carry out forecasting in a data space of
much lower dimension, parameter estimation might be more
accurate and efficient. Principal component analysis (PCA) or
Karhunen—Loeve transform is such an effective tool for linear
dimension reduction [23]. When using PCA for dimension
reduction, we select some representative components from the
input nodes and then estimate the joint probability distribution
among these components and the output node. Based on the
new relationship, we can carry out traffic flow forecasting more
efficiently. We take road By as an example to illustrate the PCA
procedure for our problem. Assume the original dimension of
the joint distribution of traffic flows of By, Ce, Cf, Cy with
their historical values is 20 when forecasting By(t). Thus, the
dimension of the input space is 19. We carry our PCA for the
19 input nodes with training data and select a few principal
components (e.g., 5, 6, or 7) to represent the input space.
Consequently, we can, respectively, reduce the input data to
these dimensions and implement forecasting with the training
data. From these results, the reduced dimension with the best
accuracy could be identified.

B. Experiments

Simply stated, the problem addressed in this section is to
forecast future traffic flow rates at given road links from the
historical data of themselves and their neighbor links. The field
data for analysis are the vehicle flow rates of discrete time
series recorded every 15 min along many road links by the
UTC/SCOOT system in the Traffic Management Bureau of
Beijing, whose unit is vehicles per hour (veh/h). From the real
urban traffic map, we select a representative patch to verify the
proposed approach, which is given in Fig. 1(a). The raw data are
from March 1 to March 31, 2002, totaling 31 days. Considering
the malfunction of detector or transmitter, we screened the days
with empty data in view of evaluation. The remaining data for
use are of 25 days and totaling 2400 sample points.

To evaluate the performance of our approach, the idea of
cross validation is utilized to conduct experiments. Please refer
to [20] for the justifications of cross validation in approach
evaluations. In doing cross validation, we divided all the sam-
ples into two parts. One part serves as a training set, which is
utilized to estimate parameters of GMM, and the other serves
as a test (validation) set to verify forecasting performance.
Every time, we randomly select 2112 samples and treat them
as training data. The rest are used for test data. For every road
link, the average accuracy across ten times of cross validation
is regarded as the accuracy of the corresponding method.

In our experiments, the forecasting orders [parameters d
and m as shown in Fig. 1(b)] from the current link and from
adjacent links are respectively taken as 4 and 5 (d =4 and
m = b), for this configuration could provide enough informa-
tion for traffic flow forecasting empirically. Then for Fig. 1(b),
the joint probability distribution of the Bayesian network
is p(H;(t — 5), Hy(t — j), Ka(t — j +1),j = 1,...,5). Using

14 T T T T T T T

*102

10F

Ka(t) (veh/h)

O 1 1
-2 0 2 4 6 8 10 12 14

Ka(t=1) (veh/h) 10

Fig. 2. Training data and estimated GMM for road link K.
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Fig. 3. Traffic flow forecasting result for the last 3 days’ data of road link K.

the CEM algorithm, we can obtain the GMM formulation of
this distribution. Fig. 2 shows an observation of this distribution
with two dimensions, K, (¢) and K,(t —1). In Fig. 2, one
point corresponds to one sample in the training data set. Each
ellipse corresponds to one estimated Gaussian component with
the center and shape denoting the estimated parameters. From
this figure, we can see that the component number of GMM
is selected as three automatically and that the configuration
of each ellipse is very regular. This should attribute to the
appealing characteristics of the CEM algorithm. It steers clear
of the problem of choosing the component number when using
the EM algorithm and gets a globally optimal realization of the
corresponding joint probability distribution. Sequentially, we
can get the optimal estimation of traffic flow of the current link
in the form of (14). Fig. 3 gives the final forecasting result of
the Bayesian network approach (without PCA for dimension
reduction) for the last 3 days’ data of link K.

RW is a classical method for traffic flow forecasting whose
core idea is to forecast the current value using the last value
[1]. In this paper, RW is adopted as one of the basis lines for
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TABLE 1
ERROR COMPARISON OF FIVE METHODS FOR SHORT-TERM TRAFFIC
FLOW FORECASTING WITH COMPLETE DATA

BN BN

RW- FNM AR (yithout PCA)  (with PCA)
B, 8304 9642 7441 74.15 72.87
Be 11356 12461  98.63 94.18 91.68
Cy; 9751 12670  89.49 88.10 84.67
Ch 7496 6689  60.85 55.34 55.43
D, 8417 8916  72.95 65.24 67.70
Dy 6744 6586  60.15 54.77 53.91
B, 15586 149.66 130.74 124.07 112.64
F. 14451 15820 119.45 114.15 110.41
G,  89.08 12617 73.14 69.26 66.66
Gq 17272 18599  150.84 140.57 135.83
H; 9595 10720  80.46 76.70 72.47
Hy, 12748 18627 102.98 105.14 112.25
I, 8159 10772 7536 74.52 77.84
Jr 14105 14737 11680 115.34 111.96
K, 9187 7451 77174 71.07 66.30
SUM 16208 18127 1384.0 1322.6 1295.6

comparisons. Besides, the FNM proposed recently is an ef-
fective approach for traffic flow forecasting that utilizes up-
stream flows in the current time interval to forecast the selected
downstream flow in the next interval [12]. It has shown great
superiority to the traditional neural network model. In this
paper, we also adopt this model for offline analysis as a basis
line to carry out comparisons among different approaches. For
the parameters involved in FNM, we use the same configuration
as the authors suggested in their paper (number of clusters is
10 and training rate is 0.1), since the parameters were found
to be enough to produce good data fitting for general urban
traffic flow forecasting problems through sensitivity analysis.
Experiments with FNM for our forecasting problem also vali-
date that this parameter configuration is among the best through
searching from a small set of parameters. In addition, the
autoregressive (AR) model, which only uses historical flow
rates of the current link to forecast, is also employed as a
comparative method. For the convenience of comparison, the
order parameter d in the AR model is taken as 4, and the other
parameters are obtained through the GMM and CEM algorithm.
The second to the fifth columns of Table I give the forecasting
results of all road links available through the RW method,
FNM approach, AR model, and Bayesian network model (BN
without PCA), respectively, with performances evaluated by
root mean square error (RMSE). In the same row in Table I, the
smaller RMSE corresponds to the better accuracy. Let ¢ be the
estimate of N-dimensional vector y, the performance measure
RMSE can be expressed as

1 Y :

3" (W) — §(n))’

n=1

RMSE(y, 9) = (15)

The size of training set is an important factor in the ac-
curacy of parameter estimation and thus of the forecasting
result. Usually, the larger the training data set is, the better
the estimated joint probability distribution will be and the
better the forecasting result. Theoretically, however, there is
no relationship about the size of training set and the forecast-
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Fig. 4. Size of training data and forecasting error for road links B and K,
based on the same test data, respectively.

ing error that can be adopted here. We have no alternative
but to explore the relationship experimentally. We conducted
experiments with varying size of training data for parameter
estimation and then obtain the corresponding forecasting error
on the same test data. Fig. 4 gives the kind of relationship for
road links By and K, respectively. For other road links, we
obtained quite similar curves. From Fig. 4, we can see the fact
with increasing number of training data that the forecasting
performance would be improved. The decreasing tendency of
the two curves also shows that the training data are a little
inadequate for parameter estimation of GMM. Therefore, PCA
would be helpful for dimension reduction in order to obtain
better forecasting results. As a byproduct, PCA can also reduce
the time of parameter estimation and traffic flow forecasting.
However, how to choose the reduced dimension number
when using PCA is a problem that should be paid attention to.
Residual variance is often used to evaluate the fits of PCA and
the reduced dimensions. For the definition and usage of residual
variance, please refer to [24]. Fig. 5 shows the residual variance
of PCA with different dimensions for input nodes of road link
By, on the training data. We see that using dimension 19 for
forecasting is quite redundant and we have not focused on
the few essential dimensions. To effectively use data and gain
good performance, we resort to look for the “elbow” where the
curve ceases to decrease significantly with added dimensions.
Sequentially, we employ PCA to reduce the input data di-
mension 19 to these numbers (shown in the rectangular), re-
spectively, and then carry out sequent forecasting. Experiments
on the training data show that the best forecasting result is
obtained at input data space dimension 6 for road link ;. The
RMSE drops from 74.15 to 72.87. For other road links, we also
carry out dimension selection by PCA before the parameter
estimation of GMM. The final forecasting performances are
listed in the last column of Table I. From the results, we
can see that incorporating information from both the current
link and adjacent links to forecast (Bayesian network method)
outperforms using the current link only (AR method). When
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Fig. 5. Residual variance of PCA with different dimensions for input data of
road link By,.

using PCA for dimension reduction, the total forecasting error
is 1295.6, which is much better than the AR method with
forecasting error 1384.0 (13 out of 15 outputs are better than the
AR method). Even without the dimension reduction procedure,
the forecasting performance is still better than the AR method
with RMSE 1322.6 versus 1384.0 (14 out of 15 outputs are
better than the AR method). The superior performance should
be attributed to Bayesian network utilizing all related informa-
tion available. In addition, from Table I, one can see that the
Bayesian network approach is much better than the RW method
and the FNM approach, and even the AR method is better than
them. So in the following parts, we use the AR method to
compare with our Bayesian network approach.

To quantitatively evaluate our approach, we carry out paired ¢
test between the experimental results of the AR method and the
Bayesian network methods. Through paired ¢ test between the
AR method and the Bayesian network method without PCA,
significant differences are found with p-value less than 0.005.
Likewise, the p-value between the AR method and the Bayesian
network method with PCA is obtained and is less than 0.005.
These results manifest that the performance of our Bayesian
network approach is significantly different from that of the AR
method. Combining the comparisons in the last paragraph, we
can draw the conclusion that the Bayesian network approach is
greatly superior to the AR method.

IV. MODEL CONSTRUCTION AND EXPERIMENTS
FOR INCOMPLETE DATA

In Section III, we applied the Bayesian network approach
to carry out traffic flow modeling and forecasting in case of
complete data. However, due to practical limitations, traffic
flows recorded can often be incomplete, i.e., partially missing
or unavailable. Developing an approach to work in case of
incomplete data would be much more important and practical.
In this section, we consider the situation where an incomplete
data exist. The following parts would demonstrate that a new
Bayesian network could be constructed to adapt to this scenario

Fig. 6. (a) Two Bayesian networks. (b) Expanded Bayesian network.

through a slight modification of the former Bayesian network
approach.

A. Modeling Mechanism and Flow Chart

Suppose we have several random variables denoted by
T1,Xo,.. Y1,Y2,-..,Yn, and z, respectively. xi,xa,
..., T, are used to forecast y; and y1,yo, ..., y, are used to
forecast z in turn. Then, considering the causal relations in
variable forecasting, we can construct two Bayesian networks
as shown in Fig. 6(a), where arrows start from the cause nodes
and point to the effect nodes. If the data for random variable y
are missing whereas the data for 1,9, ..., Tm, Y2, ..., Yy, are
complete (intact), then how can we forecast z? We can construct
another Bayesian network to model the new causal relationship,
as is given in Fig. 6(b). In the graph, z;,z2,...,Tm, Yo,

., Yn all together serve as the cause nodes of z. Since the
newly constructed Bayesian network often has more nodes
than either of the original graphs, we call it expanded Bayesian
network.

The flow chart of our forecasting procedure for incomplete
data can be described as follows. 1) Construct an expanded
Bayesian network between the input (cause nodes) and output
(effect node) for a given road link. 2) Approximate the joint
probability density function of all nodes in the expanded
Bayesian network by PCA and GMM using the methods
explained in Sections II and III. 3) Carry out the optimal esti-
mation of flow rates of the object road link in the form of (14).

* ’x’lﬂn

B. Experiments

We take road link Dy as an example to show our Bayesian
network approach for incomplete traffic flow forecasting. From
the view point of the Bayesian network, vehicle flows of C.,
Cy, and C}, should have causal relations with vehicle flow of
Dg. Similarly, vehicle flows of B, and B, should have causal
relations with vehicle flow of C},. Furthermore, considering the
time factor to predict the vehicle flow of D, at time ¢ (denoted
by Dg4(t)), we should use data Dy(t —1),...,D4(t —d) as
well. That is, some historical values of C., Cy, Ch, and Dy
could be regarded as the cause nodes of Dy(t) in a Bayesian
network. Suppose traffic flow data C}, (¢t — m) are missing, then
we can use the expanded Bayesian network method to forecast
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(t)

Fig. 7. Expanded Bayesian network for object road link D,.
TABLE 1I
ERROR COMPARISON OF TWO METHODS FOR SHORT-TERM TRAFFIC
FLOW FORECASTING WITH INCOMPLETE DATA

AR Expanded Bayesian network
Dy 66.14 57.44
Jy 123.65 110.88
Ga 155.20 138.39
Cy 90.76 86.31
SUM 43575 393.02

D,(t). The expanded Bayesian network for forecasting D 4(t)
with missing data C, (¢ — m) is shown in Fig. 7.

With the same configuration of the parameters d and
m as in Section III, the joint probability density function
in Fig. 7 is p(Ce(t — ), Cy(t — 5), Ba(t — j — 5), Bolt —
ji=05), Ch(-),Da(t —j+1),5=1,...,5), where Cp(-) =
(Cr(t—1),Cr(t—1—5),l=1,...,4). We can see that the
dimension of the joint probability density function is very high
(dimension = 33). So we use PCA to carry out dimension
reduction before the parameter learning of GMM. For other
road links, we also employ PCA for dimension reduction
before the parameter learning of GMM. The final forecasting
performances using the expanded Bayesian network approach
evaluated by RMSE are listed in Table II. The forecasting
results through the AR method are also reported. From the
experimental results, we can find the outstanding improvements
of forecasting performance brought by the Bayesian network.
For each of the four road links analyzed, the performance of the
Bayesian network outperforms the AR method significantly.
Paired ¢ test between the results of the AR method and
the expanded Bayesian network method also shows that
there are significant differences between these two methods
with p-value less than 0.05. Thus, the effectiveness of our
Bayesian network approach for incomplete data forecasting
is manifested. Considering the difference of dimensions of
the joint probability distribution between these two methods,
according to the statistical learning theory [25], we are sure
that given enough data for training, forecasting with Bayesian
networks would obtain even better results.

V. DISCUSSIONS AND CONCLUSION

In this paper, we successfully introduce the conception and
methodology of Bayesian networks from the statistical analysis,
artificial intelligence, and machine learning fields to the com-
munity of ITS for the application of traffic flow forecasting.
The essence of traffic flow is consistent with the ideology of
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Bayesian networks. In the traffic flow forecasting theme, as
vehicles usually keep travelling from one road to its neighbor
roads, we can take it for granted that the traffic volume of
the object road link is the result of the flows of its upstream
links and its own historical series. Therefore, to construct a
Bayesian network for traffic flow of each road link at a given
time is reasonable. Besides this intuitive causal relationship,
another advantage of the Bayesian network approach is that we
can collect the entire cause information to predict the traffic
flow of the object link, even in case of incomplete data. En-
couraging experimental results with real-world data also man-
ifested the applicability of the Bayesian network approach for
traffic flow forecasting.

It is true that traffic flow at the current link is not independent
of all the upstream traffic flows. However, to solve a practi-
cal problem, some approximation and assumption are usually
necessary. In this paper, we adopt the idea of conditional inde-
pendence, that is, given the adjacent upstream traffic flows at
different time delays, traffic flow at the current link is assumed
to be independent of other upstream traffic flows. The merits
of this assumption have already been exhibited by experimental
results.

In the presence of incidents/accidents, our approach can
still work in principle. Since it is based on pattern learning
from training data, as long as given adequate data that account
for these scenarios, the estimated GMM could represent these
patterns. And the sequent forecasting procedures would fol-
low similarly. However, to collect a large amount of data in
the presence of incidents/accidents is usually difficult. When
these situations occur, our approach might not be the optimal
choice and some other techniques might be helpful, such as
abnormality detection methods, etc.

Besides, concerning computational complexity, one might
be suspicious of the applicability of the Bayesian network
approach for online traffic flow forecasting. In fact, this should
not be worried about at all because the time-consuming com-
putation of parameter estimation could be done in advance and
offline. We only need the estimated parameter values and the
historical traffic flow data for online forecasting, which can be
easily implemented in real time by an ordinary PC today. In
addition, our approach can still be improved in the future by
considering the seasonal or periodical effect (e.g., daily trends,
weekly trends, and monthly trends) of traffic flows. The authors
hope to report on such extensions in future publications.
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