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ABSTRACT 
In this paper, we propose a novel transductive learning framework 
named manifold-ranking based image retrieval (MRBIR).  Given a 
query image, MRBIR first makes use of a manifold ranking 
algorithm to explore the relationship among all the data points in 
the feature space, and then measures relevance between the query 
and all the images in the database accordingly, which is different 
from traditional similarity metrics based on pair-wise distance.  In 
relevance feedback, if only positive examples are available, they 
are added to the query set to improve the retrieval result; if 
examples of both labels can be obtained, MRBIR discriminately 
spreads the ranking scores of positive and negative examples, 
considering the asymmetry between these two types of images.  
Furthermore, three active learning methods are incorporated into 
MRBIR, which select images in each round of relevance feedback 
according to different principles, aiming to maximally improve 
the ranking result.  Experimental results on a general-purpose 
image database show that MRBIR attains a significant 
improvement over existing systems from all aspects. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – image 
databases; H.3.3 [Information Storage and Retrieval]: 
Information Search and Retrieval – search process, relevance 
feedback. 

General Terms 
Algorithms, Experimentation. 

KEYWORDS 
Manifold ranking, image retrieval, relevance feedback, active 
learning. 

1. INTRODUCTION 
Image retrieval, initiated in the late 1970’s, aims to provide an 
effective and efficient tool for managing large image databases.  
With the ever-growing volume of digital images generated, stored, 

accessed and analyzed, this specific technique continually gains 
momentum, and has witnessed several major breakthroughs. 
The initial image retrieval is based on keyword annotation, which 
is a natural extension of text retrieval.  In this approach, the 
images are first annotated manually by keywords, and then 
retrieved by their annotations.   However, it suffers from several 
main difficulties, e.g., the large amount of manual labor required 
to annotate the whole database, and the inconsistency among 
different annotators in perceiving the same image. 
To overcome these difficulties, an alternative scheme, content-
based image retrieval (CBIR) was proposed in the early 1990’s, 
which makes use of low-level image features instead of the 
keyword features to represent images, such as color [3, 12, 23], 
texture [9, 10, 26], and shape [19, 20, 31].  Its advantage over 
keyword based image retrieval lies in the fact that feature 
extraction can be performed automatically and the image’s own 
content is always consistent.  Despite the great deal of research 
work dedicated to the exploration of an ideal descriptor for image 
content, its performance is far from satisfactory due to the well-
known gap between visual features and semantic concepts, i.e., 
images of dissimilar semantic content may share some common 
low-level features, while images of similar semantic content may 
be scattered in the feature space.* 
To narrow or bridge the gap, a great deal of work has been 
performed, which can be categorized into two major groups: one 
is to search for appropriate metrics to measure perceptual 
similarity; the other is to incorporate relevance feedback (RF), a 
power tool borrowed from the community of information retrieval, 
to learn better representation of images as well as the query 
concept. 
In the initial retrieval stage, where only one query example is 
available, several distance functions can be used to measure the 
similarity between the query and all the images in the database.  
For example, to make up for the drawback of traditional static 
feature weighting schemes combined with Minkowski metrics, Li 
et al [8] propose a perceptual distance function (DPF), which is 
dynamically calculated in the subspace where the similarity 
between two images is maximized.  Another example is the Earth 
Mover’s Distance (EMD) [16], which has a rigorous probabilistic 
interpretation and has been successfully applied to image retrieval 
[4].  In a recent study [6], the authors compare the performance of 
different distance functions in texture image retrieval and draw a 
conclusion that Manhattan ( 1L ) distance performs better than 
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Euclidean ( 2L ), Mahalanobis and Chebychev ( L∞ ) distances.  
This conclusion is consistent with the experimental results of [12, 
22], where 1L  distance outperforms other distances on color 
images.  However, these metrics are based on pair-wise distance 
calculation and oversimplify the relationship among all the images 
in the database.  Therefore, their effectiveness is quite limited. 
Relevance feedback, on the other hand, is an online learning 
technique used to improve the performance of information 
retrieval systems.  With the additional information of the user’s 
rating on the relevance of the retrieved images, the system 
dynamically learns the user’s query concept, and gradually 
improves the retrieval result.  Among others, a key issue in 
relevance feedback is the learning strategy.  Traditional learning 
methods can be categorized into three major groups [13, 14, 25]: 
query reweighting [5, 14, 17], query point movement [13, 18] and 
query expansion [13, 14].  However, because these methods do 
not fully utilize the information embedded in feedback images, 
their performance can not reach a satisfactory level. 
More recently, some researchers apply statistical learning methods 
to relevance feedback, which have been extensively demonstrated 
to outperform traditional ones [7, 24, 25, 27, 28].  According to 
whether unlabeled data is utilized in the training stage or not, 
these methods can be classified into inductive and transductive 
ones. 
The goal of an inductive method is to create a classifier which 
separates the relevant and irrelevant images and generalizes well 
on unseen examples.  For example, the authors of [24] first 
compute a large number of highly selective features, and then use 
boosting to learn a classification function in this feature space; 
similarly, the relevance feedback method proposed in [28] trains a 
support vector machine (SVM) from labeled examples, hoping to 
obtain a small generalization error by maximizing the margin 
between the two classes of images.  To speed up the convergence 
to the target concept, active learning methods are also utilized to 
select the most informative images which will be presented to and 
marked by the user.  For example, the support vector machine 
active learning algorithm (SVMactive) proposed by Tong et al [25] 
selects the points near the SVM boundary so as to maximally 
shrink the size of the version space.  Another active learning 
scheme, the maximizing expected generalization algorithm 
(MEGA) [7], judiciously selects samples in each round and uses 
positive examples to learn the target concept, while negative 
examples to bound the uncertain region.  One major problem with 
inductive methods is the insufficiency of labeled examples, which 
might bring great degradation to the performance of the trained 
classifier. 
On the other hand, transductive methods aim to accurately predict 
the relevance of unlabeled images which are attainable during the 
training stage.  For example, Discriminant-EM algorithm 
proposed by Wu et al [27] makes use of unlabeled data to 
construct a generative model, which will be used to measure 
relevance between the query and database images.  However, as 
pointed out in [27], if the components of data distribution are 
mixed up, which is often the case in CBIR, the performance of D-
EM will be compromised.  Despite the immaturity of transductive 
methods, we see with them great potential since they provide a 
way to solve the small sample size problem by utilizing unlabeled 
data to make up for the insufficiency of labeled data.  Furthermore, 
active learning can be incorporated to speed up the convergence to 

the query concept, which, to our knowledge, has not attracted 
researchers’ attention. 
In this paper, we propose a novel transductive learning framework 
named manifold-ranking based image retrieval (MRBIR), which is 
initially inspired by a recently developed manifold-ranking 
algorithm [29, 30].  In MRBIR, relevance between the query and 
database images is evaluated by exploring the relationship of all 
the data points in the feature space, which addresses the limitation 
of present similarity metrics based on pair-wise distance.  
Different from D-EM, which uses unlabeled data to construct a 
generative model, MRBIR takes each unlabeled image as a vertex 
in a weighted graph that will propagate the ranking score of 
labeled examples.  Furthermore, the proposed system can improve 
the retrieval result by means of relevance feedback, including 
feedback with only positive examples and with both positive and 
negative examples.  Different schemes will be applied to deal with 
these two types of feedback.  Finally, we develop three active 
learning methods based on different principles, hoping to 
maximally improve the ranking result, and discuss their 
effectiveness in image retrieval by analyzing their experimental 
results. 
The manifold ranking algorithm [29, 30] is initially proposed to 
rank the data points along their underlying manifold by analyzing 
their relationship in Euclidean space.  Although such manifold 
structure might not exist for images belonging to the same 
semantic concept, the way in which the relationship among all the 
data points is investigated can be well applied to measuring the 
relevance between the query and unlabeled images.  The 
algorithm first constructs a weighted graph using each data point 
as a vertex.  Then the positive ranking score of the query is 
iteratively propagated to nearby points via the graph.  Finally all 
data points will be ranked according to their ranking scores, with a 
larger score indicating higher relevance.  By incorporating 
unlabeled data in the learning process and exploring their 
relationship with labeled data, we hope that this transductive 
method will outperform inductive methods. 
In relevance feedback, if the user only marks relevant examples, 
the manifold ranking algorithm can be easily generalized by 
adding these newly labeled images into the query set; on the other 
hand, if examples of both labels are available, they will be treated 
differently: relevant images are also added to the query set, while 
for irrelevant images, we design three schemes to utilize their 
information, and select the best one to incorporate into MRBIR 
according to experimental results. 
To maximally improve the ranking result, we incorporate three 
active learning methods into MRBIR for selecting images in each 
round of relevance feedback.  The first method is to select the 
most relevant images; the second one is to select the most 
informative images; while the third one tries to take the advantage 
of the first two methods by selecting the inconsistent images 
which are also quite similar to the query.  We will compare their 
performance and discuss their feasibility in image retrieval. 
The main contribution of this paper can be summarized as follows: 
1. Propose a novel transductive learning framework for image 

retrieval based on a manifold ranking algorithm; 
2. Design and investigate different schemes for utilizing the 

two types of feedback to improve the retrieval result; 



  

3. Develop three active learning methods to incorporate into 
the proposed framework. 

The organization of the paper is as follows.  In Section 2, we 
introduce the transductive method used in MRBIR to measure 
relevance of database images to the query.  Section 3 presents 
different schemes for utilizing the two types of feedback to 
improve the retrieval result.  We propose our active learning 
methods in Section 4.  Implementation issues are discussed in 
Section 5.  In Section 6, we provide experimental results to 
evaluate the framework from all aspects.  Finally, we conclude in 
Section 7. 

2. THE TRANSDUCTIVE LEARNING 
METHOD FOR IMAGE RETRIEVAL 

Different from traditional methods, which measure perceptual 
similarity based on pair-wise distance, in MRBIR, we measure 
relevance between the query and database images by exploring the 
relationship of all the data points in the feature space.  To achieve 
this goal, we resort to the manifold ranking algorithm proposed in 
[29, 30].  The algorithm is initially used to rank data points along 
their underlying manifold, which is revealed by the relationship 
among all the data points.  Although such manifold structure 
might not exist for images belonging to the same semantic concept, 
the way in which the relationship among all the data points is 
investigated can be well applied to measuring the relevance 
between the query and database images.  In this section, we will 
introduce this algorithm, followed by some analysis of its 
application in MRBIR. 

2.1 Notation 
Given a set of points { }1 1, , , , , m

q q nx x x x… … "χ += ⊂ ，

the first q points are the queries which form the query set, and the 
rest are to be ranked according to their relevance to the queries.  
Let :d "χ χ× →  denote a metric on χ  which assigns each pair 

of points ix  and jx  a distance ( ),i jd x x , and :f "χ →  denote 

a ranking function which assigns to each point ix  a ranking score 

if .  Finally, we define a vector [ ]1, , T
ny y y…= , in which 

1iy =  if ix  is a query, and 0iy =  otherwise. 

2.2 The Ranking Process 
The procedure of the algorithm in [29, 30] is listed in Figure 1.  
An intuitive description of this algorithm is: a weighted graph is 
first formed which takes each data point as a vertex; assign a 
positive ranking score to each query while zero to the remaining 
points; all the points then spread their scores to the nearby points 
via the weighted graph; the spread process is repeated until a 
global stable state is reached, and all the points except the query 
will have their own scores according to which they will be ranked.  
Note that self-reinforcement is avoided by setting the diagonal 
elements of the affinity matrix to 0.  The propagation of ranking 
score reflects the relationship of all the data points, since in the 
feature space, distant points will have different ranking scores 
unless they belong to the same cluster consisting of many points 
that help to link the distant points, and nearby points will have 
similar ranking scores unless they belong to different clusters.  In 
the context of image retrieval, there is only one query in the query 
set.  The resultant ranking score of an unlabeled image is in 

proportion to the probability that it is relevant to the query, with 
large ranking score indicating high probability. 

1. Sort the pair-wise distances among points in ascending 
order.  Repeat connecting the two points with an edge 
according to the order until a connected graph is 
obtained. 

2. Form the affinity matrix W defined by 

( )2 2exp , 2ij i jW d x x σ = −   if there is an edge linking 

ix  and jx .  Let 0iiW = . 

3. Symmetrically normalize W by 1/ 2 1/ 2S D WD− −=  in 
which D is the diagonal matrix with ( ),i i -element equal 
to the sum of the ith row of W. 

4. Iterate ( ) ( ) ( )1 1f t Sf t yα α+ = + −  until convergence, 

where α  is a parameter in [ )0,1 . 

5. Let *
if  denote the limit of the sequence ( ){ }if t .  Rank 

each point ix  according to its ranking scores *
if  (largest 

ranked first). 

Figure 1. Manifold ranking algorithm 

2.3 Analysis of the Algorithm 
Next we will analyze the algorithm with respect to its transductive 
nature.  The theorem in [30] guarantees that the sequence ( ){ }f t  
converges to 

( ) 1* 1f S yβ α −= −                                 (1) 

where 1β α= − .  Although *f  can be expressed in a closed 
form, for large scale problems, the iteration algorithm is 
preferable due to computational efficiency.  Using Taylor 
expansion, we have 

( )
( )

( )

1*

2 2    

    

f I S y

I S S y

y Sy S Sy

α

α α

α α α

−= −

= + + +

= + + +

…

…

                       (2) 

Here, we omit the constant coefficient β  since it will not affect 
the ranking result.  From the above equation, we can grasp the 
idea of manifold ranking from another point of view.  *f  can be 
regarded as the sum of a series of infinite terms.  The first term is 
simply the vector y , the second term is to spread the ranking 
scores of the query points to their nearby points, the third term is 
to further spread the ranking scores, etc.  Thus the effect of 
unlabeled data is gradually incorporated into the ranking score. 

2.4 Formation of the Weighted Graph 
When applied in MRBIR, the first step of the algorithm in Figure 
1 is modified as: calculate the K nearest neighbors for each point; 
connect two points with an edge if they are neighbors.  The reason 
for this modification is to ensure enough connection for each point 
while preserving the sparse property of the weighted graph.  
Notice that in this way, the constructed graph is not necessarily 
connected and may consist of several separate clusters, which is 



  

different from the original algorithm.  An inevitable consequence 
of a disconnected graph is that not all the images will end up with 
a ranking score.  However, since the images without ranking 
scores are not connected with the queries whether directly or 
indirectly, we can conclude with high confidence that those 
images are irrelevant ones.  In the context of image retrieval 
where we pay much attention to the images ranked first, the order 
of images that come last in the ranking list is of minor concern, i.e. 
we do not care how the irrelevant images are arranged.  So we 
simply put the images with no ranking score in the tail of the 
ranking list without harming the overall performance. 
As stated in [1, 21], defining a suitable affinity matrix W is of key 
importance.  A commonly used distance function ( ),i jd x x  is the 

2L  distance, which results in a Gaussian kernel for defining edge 
weights in W.  However, based on the experimental results in [6, 
12, 22], we can draw a conclusion that 1L  distance can better 
approximate the perceptual difference between two images than 
other popular Minkowski distances when using either color or 
texture representation or both.  Replacing 2L  distance with 1L  
distance, we use the Laplace kernel in MRBIR to define the edge 
weights in W, which can be written as follows: 

( ) ( )
1

1, exp
2

m

L i j il jl l
l l

k x x x x σ
σ=

= − −∏                  (3) 

where ilx  and jlx  are the lth dimension of ix  and jx  

respectively; m is the dimensionality of the feature space; and lσ  
is a positive parameter that reflects the scope of different 
dimensions.  Thus 

( ) ( )
1

, exp
m

ij L i j il jl l
l

W k x x x x σ
=

= = − −∏                  (4) 

Here, we omit the coefficient ( )1 2 lσ , since its effect on the 
affinity matrix W will be counteracted in the normalization step 

1/ 2 1/ 2S D WD− −=  and will not contribute to the final ranking 
result. 

3. RELEVANCE FEEDBACK 
3.1 RF with Only Positive Examples 
When only positive examples are available from the user’s 
feedback or when we consider only the relevant images, several 
schemes can be applied, making use of the information to improve 
retrieval accuracy.  For example, the authors of [14] propose two 
query expansion approaches that selectively add relevant objects 
to the query, namely similar expansion and distant expansion; 
another approach adopted by [2] estimates the distribution of the 
target images in the feature space using one-class SVM.  In this 
specific context, the manifold ranking algorithm can be easily 
generalized: add the newly obtained positive examples into the 
query set, and rerun the manifold ranking algorithm to refine the 
retrieval result.  In this way, the vector y  will have multiple non-
zero components that will spread their ranking scores in the 
propagation process.  And the sequence ( ){ }f t  converges to 

( ) ( )
1

1 1*

1

n
i

i
f I S y I S yβ α β α

+ +
− −

=

= − = − ∑                   (5) 

where iy  is a n-dimensional vector with the ith component equal 
to 1 and others equal to 0, and n+  is the number of positive 
examples fed back by the user.  Therefore these examples will 
spread ranking scores independently, and assign large value to 
images belonging to their corresponding neighborhood.  The 
ultimate ranking score is the sum of these individual scores. 

3.2 RF with Positive and Negative Examples 
Due to the asymmetry between relevant and irrelevant images, 
they should be processed differently.  For example, in Rocchio 
formula [15], the initial query is moved towards positive examples 
and away from negative examples by different degrees; in MEGA 
[7], positive examples are used to learn the target concept in 

-CNFk , while negative examples are used to learn a -DNFk  that 
bounds the uncertain region; some researchers even come up with 
the idea of introducing different penalizing factors for positive and 
negative examples into the optimization problem of SVM [11].    
A deeper reason for this asymmetry is that relevant images tend to 
form certain clusters in the feature space, while irrelevant images 
occupy the remaining feature space. 
To accommodate this asymmetry, in MRBIR, positive and 
negative examples spread their ranking scores differently.  To 
speak concretely, we first define two vectors y+  and y− .  The 
element of the former one is set to 1 if the corresponding image is 
the query or a positive example; while the element of the latter 
one is set to -1 if the corresponding image is a negative example.  
All the other elements of the two vectors are set to 0.  Secondly, 
let ( ) 1A I Sβ α −= − , and define two matrices A+  and A−  which 
are used to propagate the ranking scores of positive and negative 
examples, i.e., *f A y+ + += , *f A y− − −= , where *f +  and *f −  are 
the ranking scores obtained from positive and negative examples 
respectively.  The final ranking score can be written as 

* * *f f f+ −= + .  Generally speaking, positive examples should 
make more contribution to the final ranking score than negative 
examples.  The reasons can be explained as follows: for an 
unlabeled image, the farther it lies from positive examples in the 
feature space, the less possible it is also a positive one.  However, 
we do not have a similar conclusion for negative examples: if an 
unlabeled image lies far from negative examples, the possibility 
that it is a positive one is not necessary enhanced, since it may not 
get closer to positive examples either. 

Based on the above discussion, in MRBIR, we fix A+ , and 
explore the following three schemes for designing A− : 

! In the first scheme, we set A Aγ− += , which simply impair 
the contribution of the negative ranking score to *f  by 
using a parameter ( ]0,1γ ∈ : the smaller γ  is, the less 

impact negative examples will have on *f .  When 1γ = , 
there is no de-emphasis on negative examples. 

! The second scheme is based on equation (2), i.e.,  

 
( )( )*

0
      

M
i i

i

f y Sy S Sy

S y

β α α α

β α

− − − −

−

=

= + + +

≈ ∑

…
                  (6) 

         where the negative score is approximated using only the first  



  

 M  terms.  Thus 
0

M
i i

i
A Sβ α−

=

= ∑ , this can be directly 

calculated without the iteration steps.  In this scheme, the 
ranking scores of negative examples only spread to nearby 
points, and their effect on distant points is negligible. 

! In the third scheme, we modify the neighborhood of a 
negative example by changing lσ .  Recall that lσ  denotes 
a set of parameters introduced to calculate ijW .  It also 
controls the neighborhood size within which the points will 
have a big similarity value to the center point: the bigger lσ  
is, the larger the neighborhood size.  Therefore, we 
deliberately decrease lσ  to obtain lσ ′ , and calculate another 
similarity matrix W ′  for propagating negative ranking 
scores, using lσ′ .  i.e. 

( )

( )
( )

1
1/ 2 1/ 2

1

exp

0 1

m

ij il jl l
l

l l

W x x

S D W D

A I S

σ

β α
σ η σ η

=
− −

−−

′ ′= − −

′ ′ ′ ′=

′= −
′ = ⋅ < <

∏
                     (7) 

         Thus the neighborhood of negative examples is smaller than 
that of positive examples, and the scope of their effect is 
decreased. 

In Section 6 we give experimental results to compare the three 
schemes, and incorporate the best one into MRBIR. 

4. ACTIVE LEARNING METHODS 
Contrary to passive learning, in which the learner randomly 
selects some unlabeled images and asks the user to provide their 
labels, active learning selects images according to some principle, 
hoping to speed up the convergence to the query concept.  This 
scheme has been proven to be effective in image retrieval by 
previous research work [25, 7].  In MRBIR, we develop three 
active learning methods based on different principles, which 
intentionally select images in each round of relevance feedback, 
aiming to maximally improve the ranking result. 

As pointed out in Section 3.2, *f A y+ + +=  and *f A y− − −= , 
which are the ranking scores obtained from positive and negative 
examples respectively.  The final ranking score * * *f f f+ −= + .  
For an unlabeled image ix , *

if  is in proportion to the conditional 
probability that ix  is a positive example given present labeled 

images: the larger *
if  is, the bigger the probability. 

The first method is to select the unlabeled images with the largest 
*

if , i.e., the most relevant images, which is widely used in 
previous research work [4, 17, 18, 28].  The motivation behind 
this simple scheme is to ask the user to validate the judgment of 
the current system on image relevance.  Since the images 
presented to the user are always the ones with the largest 
probabilities of being relevant, many of them might be labeled as 
positive, which will help the system refine the query concept; 
while the negative feedback images will help to eliminate false 
positive images. 

The second method is to select the unlabeled images with the 
smallest *

if .  Since the value of *
if
+  indicates the relevance of 

an unlabeled image determined by positive examples, while the 
absolute value of *

if
−  indicates the irrelevance of an unlabeled 

image determined by negative examples, a small value of 
* * *

i i if f f+ −= +  means that the image is judged to be relevant by 

the same degree as it is judged to be irrelevant, therefore, it can be 
considered an inconsistent one.  From the perspective of 
information theory, such images are most informative. 
The third method tries to take the advantage of the above two 
schemes by selecting the inconsistent images which are also quite 
similar to the query.  To speak concretely, we define a criterion 
function 

( ) * * *
i i i ic x f f f+ + −= − +                            (8) 

Unlabeled images with the largest value of ( )ic x  are selected for 
feedback.  The criterion can be explained intuitively as follows: 
the selected images should not only provoke maximum 
disagreement among labeled examples (small * *

i if f+ −+ ), they 

must also be relatively confidently judged as a relevant one by the 
positive examples (large *

if
+ ).  We justify this scheme as follows: 

generally speaking, since positive examples occupy a small region 
in the feature space and are surrounded by negative examples, to 
identify the true boundary separating the two classes of images 
with a small number of labeled examples, it is more reasonable to 
explore in the inconsistent region near positive examples than in 
the entire inconsistent region.  If an image is far from all the 
labeled examples, it will have a small value for both *

if
+  and 

*
if
− , and a small * *

i if f+ −+  accordingly, thus it is likely to be 

selected by the second scheme although it makes small 
contribution to the refinement of the boundary.  However, it is not 
likely to be selected by the third scheme according to equation (8).  
Therefore, this scheme is expected to outperform the second one. 

5. IMPLEMENTATION ISSUES 
One crucial element in designing an applicable CBIR system is 
the response time.  It is unimaginable that the user has to wait a 
long time before the system is able to return satisfactory retrieval 
results.  In the manifold ranking algorithm, we have to calculate 
the multiplication of large scale matrices in the iteration step.  
However, after the graph is simplified by connecting only 
neighboring points, we can use a sparse representation for 
matrices W and S, which are calculated off-line.  In this way, the 
processing time can be greatly reduced.  Another acceleration 
scheme is based on sampling techniques, which reduces the scale 
of the weighted graph to form a small graph, and propagates the 
scores of labeled images to its vertexes.  For images not in the 
small graph, their scores can be obtained by exploring their 
neighborhood relationship with images in the small graph. 
Another issue is with respect to the query image.  Recall that the 
weighted graph takes the query point as a vertex.  If the query 
image is in the database, we can directly use the matrices W and S 
which are calculated off-line to rank the unlabeled images.  On the 
other hand, if the query image is not in the database, we first 
project it to a point in the feature space.  Next we connect the 



  

query with its K nearest neighbors in the image database, and 
calculate the edge weights by equation (4).  Thirdly, we add one 
row and one column to W, with each element equal to the 
corresponding edge weight.  All the other operations will be 
performed similarly using this enlarged matrix W. 

6. EXPERIMENTAL RESULTS 
We have evaluated the performance of MRBIR using a general-
purpose image database consisting of 5,000 Corel images.  The 
images are categorized into 50 groups, such as beach, bird, 
mountain, jewelry, sunset, etc.  Each of the categories contains 
100 images of essentially the same content, which serve as the 
groundtruth.  We use each image in the whole database as a query, 
and average the results over the 5,000 queries.  The precision vs. 
scope curve is used to evaluate the performance of various 
methods. 
Feature selection is a large open problem and might have a great 
impact on the results.  In our current implementation, the feature 
vector is simply made up of color histogram [23] and wavelet 
feature [26] since we focus on the relative performance 
comparison1.  Color histogram is obtained by quantizing the HSV 
color space into 64 bins.  To calculate the wavelet feature, we first 
perform 3-level Daubechies wavelet transform to the image, and 
then calculate the first and second order moments of the 
coefficients in High/High, High/Low and Low/High bands at each 
level.  We will leave the problem of selecting the optimal feature 
combination to future work. 
There are four parameters needed to be set in the manifold ranking 
algorithm: K, α  , lσ  and the iteration steps.  The algorithm is not 
very sensitive to the number of neighbors.  In our experiments, we 
set 200K = .  α  is fixed at 0.99, consistent with the experiments 
performed in [29, 30].  The value of lσ  is problem-dependent.  A 
principled way for determining lσ  is setting it to be the average 
value in the lth dimension.  In our current implementation, we set 
it to be 0.05 for all dimensions for the sake of simplicity.  The 
number of iteration steps is 50, since we observe no improvement 
in performance with more iteration. 

6.1 MRBIR without Relevance Feedback 
As a new scheme of measuring similarity between images in 
CBIR, MRBIR is first compared with traditional methods based 
on pair-wise distance when no relevance feedback is performed.  
The comparison results are illustrated in Figure 2.  From the figure, 
we can see that MRBIR using Laplace kernel outperforms all the 
other methods, which confirms the method from two aspects: (1) 
by considering the relationship among all the data points, our 
method can better approximate relevance between the query and 
database images than traditional methods; (2) Laplace kernel is 
more suitable for defining edge weights than Gaussian kernel. 

6.2 Comparison of Schemes for Incorporating 
Negative Examples 

As discussed in Section 3.2, we have three candidate schemes for 
designing A− .  In order to select the best one to integrate into 
                                                                 
1 We have performed experiments with various features, such as 

color coherence, color correlogram, etc, and have reached the 
same conclusion. 

MRBIR, we have performed parametric study for each scheme: 
0 1γ< ≤  for Scheme 1; 1 10M≤ ≤  for Scheme 2; and 0 1η< <  
for Scheme 3.  We have observed that to achieve satisfactory 
results, γ  should lie within [0.1, 0.5]; M  can be any integer 
between 2 and 5; and η  should lie within [0.3, 0.7]. 

In Figure 3, we have compared the performance of the three 
schemes with the following parameter settings: 0.25γ = ; 3M = ; 
and 0.5η = .  Furthermore, we also present the result when 1γ =  
in Scheme 1 (denoted as “Ref”).  In this case, positive and 
negative examples are treated without difference.  Obviously, the 
three schemes with proper parameter settings outperform this 
naive method, which validates the asymmetry between positive 
and negative examples discussed in subsection 3.2.  For example, 
P10 using Scheme 1 is 0.540, using Scheme 2 is 0.531, using 
Scheme 3 is 0.520, and using “Ref” is 0.503.  Moreover, Scheme 
1 is slightly better than the other two despite of its simplicity.  
Therefore, Scheme 1 is incorporated into MRBIR. 
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Figure 2. Comparison without relevance feedback. 
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Figure 3. Comparison of the three schemes. 

6.3 Relevance Feedback 
When both positive and negative examples are provided by the 
user, we apply MRBIR (with three active learning methods), SVM 
[28] and SVMactive [25] to refine the retrieval result, and compare 
their performance.  For SVM and SVMactive, 1L  distance is 
utilized in the initial retrieval stage and the adopted kernel is 
Gaussian kernel.  To provide a systematic evaluation, we fix the 
total number of images that are marked by the user to 20, but vary 
the times of feedback and the number of images fed back each 
time accordingly.  The combinations used in this experiment 
include: 1 feedback with 20 images each time; 2 feedbacks with 
10 images each time; and 4 feedbacks with 5 images each time.  In 



  

all the experiments, no matter which active learning method is 
taken, MRBIR outperforms SVM and SVMactive.  In this section, 
we only present the results after the first and second rounds of 
relevance feedback with 5 images fed back each time, as in Figure 
4. 
In the first round of relevance feedback, the active learning part of 
both MRBIR and SVMactive is not provoked, and the most relevant 
images are labeled by the user.  We did not adopt the scheme 
presented in [25], which asks the user to label randomly selected 
images in the first round of relevance feedback, since in this 
scheme, the information about the query is not utilized in the 
initial stage, which will inevitably result in slow convergence to 
the query concept. 
After the first round of relevance feedback (Figure 4(a)), MRBIR 
exhibits significant improvement over SVM.  Take P10 (the 
precision within the first 10 retrieved images) as an example, for 
SVM, P10 is 0.260; while for MRBIR, it is 0.401, which exceeds 
SVM by about 54%.  Similarly, P100 is 0.111 using SVM, and is 
0.189 using MRBIR.  The latter exceeds the former by about 70%.  
The reason lies in the fact that very few training examples may 
cause the decision boundary in SVM to distort greatly from the 
ideal one, while MRBIR can always relatively accurately predict 
the relevance of unlabeled images in the neighborhood of labeled 
examples. 
When the second round of relevance feedback has been performed 
(Figure 4(b)), no matter which active learning method is taken, 
MRBIR outperforms SVM and SVMactive.  Again we take P10 to 
demonstrate the advantage of MRBIR.  For SVM, P10 is 0.265; 
for SVMactive, P10 is 0.239; while for the three active learning 
methods used in MRBIR, P10 is 0.478, 0.411, and 0.459 
respectively.  The best result obtained by MRBIR exceeds SVM 
by 80%, and SVMactive by 100%. 
Notice that comparing Figure 2 and Figure 4, SVM and SVMactive 
cause degradation in performance.  Only after the system has 
accumulated enough labeled examples, are they able to refine the 
retrieval result; while MRBIR consistently increases the precision 
and outperforms SVM and SVMactive.  Comparing Figure 4(a) and 
Figure 4(b), the improvement in P10 using SVM is only 0.005, 
while the improvement of MRBIR using the first active learning 
method is 0.077. 
Comparing the three active learning methods (Figure 4(b)), the 
performance of the second one (MRBIR2) is the worst, which 
selects the most informative images.  The reason may be the lack 
of positive examples.  When we try to capture a query concept 
with a limited number of labeled images, positive examples tend 
to be more important than negative ones.  Since the second 
scheme selects the images which arouse the most disagreement 
among labeled images, the positive examples fed back in each 
round of relevance feedback is generally smaller than the other 
two methods, thus its performance is compromised.  Of the 
remaining two methods, the first method is slightly better than the 
third one, which may lead to the following conclusion: in image 
retrieval where the labeled examples are quite limited, selecting 
the most relevant images in each round of relevance feedback may 
be the best strategy for active learning. 
In our experiments, MRBIR also greatly outperforms MARS [17, 
18] when only positive examples are fed back by the user.  Due to 
the limited space, we will not present specific results.  

6.4 Processing Time 
We also compare the average response time of MRBIR using the 
first active learning method with existing systems, which is listed 
in Table 1 (Pentium 4 1.80GHz, 512M RAM).  Although MRBIR 
needs the longest time among all algorithms, it is still acceptable 
for both the search session and the feedback session. 

Table 1. Comparison of Processing Time 

Time(second) MRBIR 1L  SVM SVMactive

Search 0.859 0.015     

Feedback 0.859   0.062 0.062 

0

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50 60 70 80 90 100
Scope

P
r
e
c
i
s
i
o
n

MRBIR SVM

 
(a) 

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100
Scope

Pr
ec
is

io
n

MRBIR1 MRBIR2 MRBIR3

SVM Active SVM

 
(b) 

Figure 4. (a) Comparison after the first round of relevance 
feedback with 5 feedback images; (b) Comparison after the 
second round of relevance feedback (MRBIR1-MRBIR3 
denote the three active learning methods). 

7. CONCLUSION 
In this paper, we propose a novel transductive learning framework 
named manifold-ranking based image retrieval (MRBIR), which is 
inspired by a recently developed manifold-ranking algorithm [29, 
30].  The algorithm is initially proposed to rank data along their 
underlying manifold.  In MRBIR, we use this algorithm to explore 
the relationship among all the data points in the feature space, and 
measure relevance between the query and database images, thus it 
addresses the limitation of present similarity metrics based on 
pair-wise distance.  MRBIR also enables the user to perform 
relevance feedback, and provides different schemes to refine the 
retrieval result in case of the two types of feedback.  Furthermore, 
we incorporate three active learning methods into MRBIR to 
speed up the convergence to the query concept.  The methods 
make use of different principles to select images in each round of 



  

relevance feedback and ask the user for their labels.  Experiments 
on a general-purpose image database consisting of 5,000 Corel 
images demonstrate that MRBIR outperforms existing methods. 
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