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Abstract

Collaborative filtering aims at predicting a test user’s
ratings for new items by integrating other like-minded
users’ rating information. Traditional collaborative filter-
ing methods usually suffer from two fundamental problems:
sparsity and scalability. In this paper, we propose a novel
framework for collaborative filtering by applying Orthogo-
nal Nonnegative Matrix Tri-Factorization (ONMTF), which
(1) alleviates the sparsity problem via matrix factorization;
(2)solves the scalability problem by simultaneously cluster-
ing rows and columns of the user-item matrix. Experimental
results on benchmark data sets are presented to show that
our algorithm is indeed more tolerant against both spar-
sity and scalability, and achieves good performance in the
meanwhile.

1 Introduction

Collaborative filtering aims at predicting a test user’s
ratings for new items based on a collection of other like-
minded users’ ratings information. It assumes that users
sharing the same ratings on past items tend to agree on new
items. Up to now, research on collaborative filtering can be
mainly categorized into two categories: memory-based and
model-based.

Memory-based algorithms, including user-based [2, 12,
14, 19] and item-based [4, 20], first compute similarities
between the test user and other users (user-based), or, be-
tween the test item and other items (item-based), and apply
them to identify the top K most similar neighbors of the
test one. Then the unknown rating is predicted by com-
bining the known rating of the neighbors. However, there
exist two fundamental challenges for memory-based meth-
ods. The first one is sparsity. These algorithms rely upon
exact matches of two user/item vectors, which cause the
algorithms to sacrifice recommender system coverage and
accuracy. More concretely, since the correlation coefficient

is only defined between customers who have rated at least
two products in common, or the items which have been co-
purchased, then many pairs of customers/items will have
no correlation at all. As a result, memory-based recom-
mender systems cannot accurately compute the neighbor-
hood and identify the items to recommend, which will cer-
tainly lead to poor recommendations. The second one is
scalability. In practice, both the number of users and items
can be quite large (often millions of users and thousands
of items). This may slow down the recommendation pro-
cedure significantly since K nearest neighbor based algo-
rithms will require too much computations in this case [20].

Different from memory-based approaches, model-based
approaches need to establish a model using training exam-
ples that can predict the unknown ratings of a test user.
Examples within this category include decision tree [2],
Bayesian network [2], clustering models [21], latent factor
models [3], aspect models [13], dimension-reduction meth-
ods [11], etc.. However, just as pointed out by [23], gen-
erating and updating of a model are often time-consuming
since there are usually many free parameters to tune.

The other technique that is closely related to this paper
is the co-clustering approaches, which solves the problem
of simultaneously clustering rows and columns of a data
matrix. [5, 24] individually developed a co-clustering ap-
proach by using the bipartite graph formulation and spec-
tral methods, but that demanded that each row cluster was
associated with a column cluster. Recently, [6] proposed a
information-theoretic co-clustering technique by minimiz-
ing the loss of mutual information, and [1] extended the
information-theoretic co-clustering and suggested a gener-
alized maximum entropy co-clustering approach by appeal-
ing to the minimum of Bregman information principle. Re-
cently, [8] gave a novel co-clustering approach based on
nonnegative matrix factorization, and [17] also provided a
similar co-clustering method called Co-clustering by Block
Value Decomposition. [10] considered a novel collabora-
tive filtering approach based on the co-clustering algorithm
in [1], but that was only a model-based approach. In this



paper, we use ONMTF rather than the method in [10] to co-
cluster, for [17] verified that the co-clustering method based
on nonnegative matrix factorization was usually superior to
the information-theoretic co-clustering methods in [6, 9] by
empirical studies.

In this paper, we provide a novel framework for collab-
orative filtering, which circumvents the problems of tradi-
tional memory-based and model-based approaches by ap-
plying Orthogonal Nonnegative Matrix Tri-Factorization
(ONMTF)[8]. Our algorithm first applies ONMTF to si-
multaneously cluster the rows and columns of the user-item
matrix, and then adopts the user-based and item-based clus-
tering approaches respectively to attain individual predic-
tions for an unknown test rating, finally we will fuse these
resultant ratings via a linear combination. Our algorithm
possesses the following superiorities:

1. The sparsity problem has been circumvented due to the
application of matrix factorization.

2. The scalability problem can be greatly alleviated by
the application of ONMTF technique, since the users
and items are simultaneously clustered.

3. Our method can fuse the prediction results of differ-
ent types of algorithms (user-based approach and item-
based approach), which can get better performances
according to our experiments.

The rest of this paper is organized as follows. Section
2 describes orthogonal nonnegative matrix tri-factorization
and its relation to clustering. In section 3, we elaborate our
framework for collaborative filtering by using ONMTF and
fusing all ratings with predictive value. The data and results
of experiments are presented in section 4, followed by our
conclusions in section 5.

2 Orthogonal Matrix Tri-

factorization

Nonnegative

The Nonnegative Matrix Factorization (NMF) is first
brought into machine learning and data mining fields by
Lee and Seung [15, 16], and now it has been widely ap-
plied in pattern recognition, multimedia, text mining and
bioinformatics [8]. Recently, Ding et al. [7, 8] proved the
equivalence between NMF and K-means/spectral cluster-
ing, and extended NMF to ONMTF which could simultane-
ously cluster rows and columns of an input matrix.

Now let’s briefly review the basic idea of NMF. Given a
nonnegative matrix X, NMF aims to find two nonnegative
matrix factors U and V' such that

X ~UvVT (1)

where X € RZ*", U € RZ" and V € R7*F (R7*¥ is the
set of n-by-k matrices whose elements are all nonnegative).

In general, the rank of matrices U and V' is much lower than
the one of matrix X, i.e. k& < min(p,n). Thus, NMF can
be viewed as a special low-rank matrix factorization.
Furthermore, if the orthogonality of matrix factors is re-
quired, we can obtain the following orthogonal NMF.

min | X —UVT|]? st. VIV =1 2)
U>0,V>0

i @5
[7] proves that orthogonal NMF is equivalent to K -means
clustering, where V is the cluster indicator for cluster-
ing X’s columns, U is the set of cluster centroids. Now,
we explain that in detail. Suppose V = [v1,---,v,]T,
v = (vj1, -+, )T and vj; = max;—1,... k{vjm }, then
the jth column vector of X belongs to the sth cluster and
the sth cluster centroid is the sth column of U. (i.e., each
row of V' is the cluster indicator of corresponding column
of X, and each column of U is a cluster centroid).

In a recent paper [8], Ding ef al. derived the follow-
ing Orthogonal Nonnegative Matrix Tri-Factorization (ON-
MTF):

min || X —USVT | st.UTU =1,VIV =1
U>0,5>0,V>0
3)

where X € RP*", U € RP*, S € RP! and V € R
They showed that ONMTF is equivalent to the simultaneous
clustering of the rows and columns of X [8]. Similarly, U
indicates which cluster every row of X belongs to when
clustering X’s rows, and V indicates which cluster every
column of X belongs to when clustering X’s columns.

The optimization problem (3) can be solved using the
following update rules [8]

where || - || is Frobenius norm, ie. |A] =

(XTUS)
V. LA 4
Vit = Vin\ [ vvtxTU sy, @
' _ (XVST)ik
Uzk — Uzk (UUTXVST)Zk (5)
' 4 (UTXV )ik
Szk — Sv,k (UTUSVTV)Zk (6)

Ding et al. [8] further proved that under the update rule (6),
the object function of Eq. (3): [|[X — USVT||? is mono-
tonically decreasing, i.e. the update rule (6) ensures that
| X — USVT|? can converge to a local minimum.

In the next section, we will show how to apply the ON-
MTF technique to collaborative filtering.

3 Our Framework

We will first introduce some notations that will be used
throughout the paper. In a typical collaborative filtering sce-
nario, there is a p x n user-item matrix X, where p is the



number of users and n is the number of items. Each element
of X: x;,, = r denotes that the jth user rates the mth item
by r, where r € {1,---, R}. When the item is not rated,
Tjm = Q)

Let

T

X = ['Ufl, e ’U/p] 7uj:(xj1’
where the vector u; indicates the jth user’s ratings to all
items.

Likewise, the user-item matrix X can be decomposed
into column vectors
X = [ila ) in]a im = (xlmv o
where the vector ¢,, indicates all users’ ratings to the mth
item.

3.1 Memory-based Approaches

In our method, we choose the cosine similarity as the
user similarity measure. Mathematically, the cosine simi-
larity between the j;th user and the joth user is the cosine
of the angle between these two user vectors.

Subsequently, the test user’ rating for an unknown item
can be given by

u;
Zuh stm(up, w;) (Unm — Tp)

Euh sim(up, u;)

(7

Tjm = Uj +

where ; is the average rating of the jth user, and u;, €
{the most similar K — users of u;}.

In addition, we select the adjusted-cosine similarity as
the item similarity measure. Different from cosine-based
similarity, the adjusted-cosine similarity removes the differ-
ences in rating scale between different users by subtracting
the corresponding user rating average from each co-rated
pair [20].

The rating for an unknown item is calculated by

224, Sim(in, ) (T5n)

Tjm = - ra—
I >, Sim(in, im)

®)

where iy, € {the most similar K — items of i }.

3.2 Clustering Techniques for Collabora-
tive Filtering

In our framework, the user-item matrix X is first ap-
proximated by using orthogonal nonnegative matrix tri-
factorization, so that the co-clustering of both users and
items can be achieved. Suppose that X is factorized as
USvVT UTU = L,VTV = I), where U € R{*F,
S € Rﬁ”, and V € RQ‘_XZ. Thereinto, each row vector

5 xj?L)Ta .] € {la o 7p}

Ty xpm)Tv mc {17 ,n}

of U is the cluster indicator of the corresponding user vec-
tor and each row vector of SV denotes a user-cluster cen-
troid. Similarly, each row vector of V' is the cluster indicator
of the corresponding item vector and each column vector of
U S denotes a item-cluster centroid.

Now we will introduce how our method identifies the
K nearest neighbors of test users or test items. Traditional
methods usually need to search the whole database, which
will definitely suffers from the scalability problem as the
growth of data. In this case, since the clustering techniques
can significantly reduce the search space, thus, we can apply
them to the large scale data. Based on the clustering results,
as suggested by [23], the neighbors’ selection has two steps.
Take the user’s neighbor selection as an example (the item’s
neighbor selection is similar):

1. Compute the similarities between the test user and all
the user-cluster centroids. By sorting the similarities
we can take the most similar C clusters as candidates.
This step is called the neighbor pre-selection, which
discards some irrelevant information [23].

2. Choose the K neighbors of the test user in the candi-
date set by using ordinary user-based methods.

Apparently, in the previous two steps, the pre-selection
directly determines the search space and the subsequent pre-
diction.

After the K most similar neighbors of a test user or a test
item having been decided, we can apply Eq.(7) and Eq.(8)
to obtain two individual predictions for an unknown rating
based on user and item based methods.

3.3 Prediction Fusion

Purely using user-based or item-based algorithms for
collaborative filtering often gives poor predictions, espe-
cially when the user-item matrix is quite sparse. Similar
to the idea in [22], we provide a framework that can ef-
fectively improve the performances by fusing the results of
user-based and item-based predictions.

In addition, since USVT already makes an estimation
for all unknowing ratings in the user-item matrix X, we
should also consider the prediction of ONMTF itself.

By linearly combining the previous three different types
of predictions, we can obtain the final prediction result as

Tjm = ANZjm +0(1 = N uZjm + (1= 6)(1 = N)izjm (9)

where N jm,, UT jm., iijm are the prediction results of ON-
MTF, user-based, item-based, and 0 < A < 1,0<§ <1
are the fusion coefficients.

Therefore, our prediction model can be viewed as the
weighted sum of three types of predictors, in which A and
0 control the weight values. Additionally, in order to give



a good interpretation to linear combination, [22] proposes a
probabilistic fusion framework by using the independence
assumption on different types of ratings and the Bayes rule.
Obviously, the principled probabilistic interpretation can be
easily endowed with our framework.

Finally, we summarize our algorithm (called CFON-
MTF) in Algorithm 1.

Algorithm 1 Collaborative filtering using orthogonal non-
negative matrix tri-factorization (CFONMTF)

1. The user-item matrix X is factorized as USV7T by
using ONMTF

2. Calculate the similarities between the test user/item
and user/item-cluster centroids by using the clustering in-
formation contained in U, S, V'

3. Sort the similarities and select the most similar C'
user/item clusters as the test user/item neighbor candi-
date set

4. Identify the most similar K neighbors of the test
user/item by searching the user/item candidate set

5. Predict the unknown ratings by using user-based ap-
proaches (Eq. 7) and item-based approaches (Eq. 8) re-
spectively

6. Linearly combine three different predictions by ON-
MTF itself, user-based approaches and item-based ap-
proaches

4 Experiments
4.1 Dataset

We used the MovieLens ! data set to evaluate our algo-
rithm. The MovieLens data set is composed of 943 users
and 1682 items (1-5 scales), where each user has more than
20 ratings. For conveniently comparing with collaborative
filtering algorithms listed in [22, 23], we also extracted a
subset which contained 500 users with more than 40 ratings
and 1000 items. The first 100, 200 and 300 users in the data
set are selected into three different training user sets respec-
tively, which are denoted as ML_100, ML_200 and ML_300.
But for different training size, the test user set is fixed, i.e.
the last 200 users. In our experiments, the available ratings
of each test user are split into an observed set and a held out
set. The observed ratings are used to predict the held out
ratings.

Additionally, as done by [23], we randomly selected 5,
10 and 20 items rated by test users in the observed set,
which were also called Given5, Givenl0, and Given20 re-
spectively.

Uhttp://www. grouplens. org/

4.2 Evaluation Metric

There are several types of measures for evaluating the
performance of collaborative filtering methods [20]. For
consistency with the experiments in [22, 23], we choose the
mean absolute error (MAE) as evaluation metric. The MAE
is calculated by averaging the absolute deviation between
predicted values and true values. Formally,

Zj,m |xjm - EJ7n|
N

MAFE = (10)
where N is the number of tested ratings. The lower the
MAE, the better the performance.

4.3 Combination Coefficients

Due to limited space, we do not report the choices for
number of clusters and size of neighbors in detail. Dur-
ing all the following experiments on ML_300 we choose 20
as the number of user/item clusters, 30% as the percentage
of pre-selected user/item neighbors and 20 as the size of
user/item neighbors.

As shown in Eq. 9, A and ¢ reflect the weights of three
different models: ONMTF, user-based and item-based. We
conducted two experiments on ML_300 to identify the opti-
mal combination coefficients.

First, let A = 0 and test the property of . Fig. 1 indi-
cates MAE of CFONMTF when ¢ varies from O to 1. The
value of § balances the predictions between user-based and
item-based. We observe that the optimal value of ¢ is ap-
proximately between 0.5 and 0.7. From Fig. 1, we find
that on ML_300 the performance for user-based methods
(6 = 1) is better than the performance for item-based meth-
ods (0 = 0), so the optimal value of § emphasizes the user-
based methods.

Second, We fix 4 to be 0.6 and continue to test the prop-
erty of A\. From Fig. 2, we observe that the optimal value
of A is about between 0.2 and 0.4. The optimal value of
A is a trade-off between ONMTF and memory-based ap-
proaches. Altogether, our fusion framework integrates the
complementary information from three different methods:
ONMTF, user-based and item-based. Generally speaking,
the complementary information can improve the predic-
tion accuracy. Our experiments demonstrate that the fusion
method is indeed superior to any individual approach.

4.4 Scalability

Relative to traditional memory-based methods, our fu-
sion algorithm adds a process: simultaneously clustering
rows and columns of a user-item matrix (i.e. ONMTF),
but the neighbor search space can be reduced. Consider a



simple fusion scheme that just linearly combines user-based
and item-based methods [22]. Formally,

& jn = i jo + (1 — )i (an

where 0 < pu < 1, ux! jm and iz’ jm are the predictions for
Z;m by using user-based and item-based methods respec-
tively. The scheme is called SFI in [22]. We conducted an
experiment on ML_300 that compared the execution time
of CFONMTF and SF1 under the same computational envi-
ronment.

As shown in Fig. 3, the execution time for CFONMTF
on a PC with a 2.0GHz Intel PIV CPU and a 1GB Mem-
ory is far shorter than the execution time for SF/ when
the percentage of pre-selected neighbors is 30%. This suf-
ficiently illuminates our method’s resistance to scalability.
Generally, ONMTF in our experiments converges to the op-
timal value within one hundred iterative steps, which re-
quires much less cost of execution time than searching the
left 70% of the whole data set. Therefore, the execution
time of our method is greatly reduced.

4.5 Sparsity

Data sparsity has an important effect on the performance
of collaborative filtering approaches. We did an experiment
on ML_300 that showed our algorithm’s tolerance to spar-
sity.

Fig. 4 shows the performances of SF/ and CFONMTF
when the sparsity of the data set ML_300 varies. We se-
lected the 10%, 20%, 40%, 60%, 80%, 100% of the known
ratings at random respectively. As shown in Fig. 4, CFON-
MTF outperforms SFI more as the rating data gets sparser.
Just as discussed in [22], when the user-item matrix is
quite sparse, we cannot obtain sufficient similar ratings by
similar users or similar items. This results in the poor
performance of collaborative filtering algorithms based on
memory-based alone. In our scheme, ONMTF itself can
be considered as a background model which provides the
complementary information and improve the prediction ac-
curacy when only sparse data is available. From the ex-
periment we conclude that our fusion framework is quite
suitable for sparse data.

4.6 Performance Comparison with Other
Methods

Finally, we compared our fusion scheme CFONMTF
with state-of-the-art collaborative filtering algorithms listed
in [23, 22], i.e. similarity fusion (SF2) ([22]), cluster-based
Pearson Correlation Coefficient (SCBPCC) ([23]), Aspect
Model (AM) ([13]), Personality Diagnosis (PD) ([18]),
user-based Pearson Correlation Coefficient (PCC) ([2]) and

Table 1. Comparison with the results re-
ported in [22, 23]. A small value means a bet-
ter performance

Training Set | Algorithms | Given5 | GivelO | Give20
CFONMTF | 0.838 | 0.801 0.804

SF2 0.847 | 0.774 | 0.792

SCBPCC 0.848 0.819 | 0.789

ML_100 CBCF 0.924 | 0.896 | 0.890
AM 0.963 0.922 | 0.887

PD 0.849 | 0.817 0.808

PCC 0.874 | 0.836 | 0.818

CFONMTF | 0.827 | 0.791 0.787

SF2 0.827 | 0.773 0.783

SCBPCC 0.831 0.813 0.784

ML_200 CBCF 0.908 0.879 | 0.852
AM 0.849 | 0.837 0.815

PD 0.836 | 0.815 0.792

PCC 0.859 | 0.829 | 0.813

CFONMTF | 0.801 0.780 | 0.782

SF2 0.804 | 0.761 0.769

SCBPCC 0.822 | 0.810 | 0.778

ML_300 CBCF 0.847 | 0.846 | 0.821
AM 0.820 | 0.822 | 0.796

PD 0.827 | 0.815 0.789

pccC 0.849 | 0.841 0.820

cluster-based collaborative filtering (CBCF) ([21]). Table
1 shows the results of seven algorithms. Our method out-
performs all the other methods in Given5, and is just a lit-
tle worse than SF2 in Givenl0 and Given20 (only in a few
cases, also a little worse than SCBPCC). But as discussed
in Section 2, SF2 suffers from the scalability problem while
our method successfully resolves the problem. Hereby, it
can be said that the overall performance of our approach is
the best, considering the balance between computation effi-
ciency and prediction accuracy.

5 Conclusions

In this paper, we represented a novel fusion framework
for collaborative filtering. The model-based approaches
(i.e. clustering techniques here) and the memory-based ap-
proaches (i.e. user-based and item-based here) are naturally
assembled via ONMTF. Our method greatly mitigates the
two fundamental problems: sparsity and scalability by us-
ing the proposed hybrid technique. Empirical studies veri-
fied that our framework effectively improves the prediction
accuracy of collaborative filtering and resolves the sparsity
and scalability problems. In the future, we will further in-
vestigate the new co-clustering techniques, find a method
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that can automatically solve the fusion coefficients and de-
velop other better fusion models.
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