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ABSTRACT
This paper proposes a semi-supervised distance metric learn-
ing algorithm for the ranking problem. Instead of giving the
computer what are the important factors that affect the fi-
nal rank value, we only give several most certainly ranked
points which implicitly contain the knowledge of the rank-
ing factors. Then the computer can automatically use the
most certain points and plenty of unlabeded data to learn
an informative metric for ranking. This metric not only can
help to regress an order in the observed data, but also can
be used to retrieve the data by querying new test points.
Moreover, the lower-rank distance metric can be used to
visualize high-dimensional data. We also present an appli-
cation to the housing potential estimation problem. It is
shown that the algorithm is efficient to help consultants to
refine their consulting work.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.5.4 [Pattern
Recognition]: Applications; H.3.1 [Information Storage
and Retrieval]: Content Analysis and Indexing

General Terms
Algorithms, Experimentation

Keywords
Metric Learning, Dimensionality Reduction, Ranking, Infor-
mation Retrieval, Semi-Supervised Learning.
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Ranking is a common way to find an order of real world
data. It is not only used in computer science society, but
also used in other domains such as business and finance.
Scoring the multi-variate examples by adding a weight to
each feature is usually done in business consulting and anal-
ysis. However, it is simple and intuitive, and the results may
be not good enough. Another method to get the weights of
features is to learn them from data which contain implicit
domain knowledge.

Learning weights of features is regarded as a kind of dis-
tance metric learning problem [9]. For ranking, learning an
informative distance metric is helpful to reduce the compu-
tational complexity and improve the ranking accuracy. For
high-dimensional data, it is also helpful to visualize them
in a low-dimensional coordinates system. Many problems,
such as text and content based multimedia retrieval, need
to learn a good distance metric.

In general, we should utilize some prior assumption or do-
main knowledge to learn a distance metric. For example, for
classification the domain knowledge is the class label. For
ranking, we can not make the cluster assumption because
there is no clear class boundary. Thus, other domain knowl-
edge should be proposed to learn a more reasonable ranking
metric. It is impossible to sort a large amount of data as
an ordered sequence manually. Conversely, it is effortlessly
for human to provide some examples as the most certainly
“good” and “bad” points, which can be seen as a kind of do-
main knowledge. Based on the domain knowledge of most
certain points, there are two jobs: (1) to obtain the order
of the observed data points. (2) for new test point, to find
what is its position in the whole sequence, or to find what
are the most similar points in the already observed data set.

In this paper, we design an algorithm that can deal with
this type of domain knowledge and can do the two types
of ranking tasks. Both the human hints and the geometric
information provided by observed data should be used. The
essence of the proposed algorithm is a semi-supervised learn-
ing method. However, it is different from the start point of
traditional semi-supervised classification and clustering [11].
Generally, we do not make the assumption of existence of
classes and do not want to find the classification boundaries.
Instead, we only assume that the data point cloud can con-
struct a graph which describes the manifold structure, and
there are multiple concepts on different parts of the man-
ifold. By maximizing the distance between different con-



cepts and simultaneously preserving the local structure on
the manifold, the learned metric can indeed give good rank-
ing results. Besides giving the test results on the benchmark
data, we also show an application to business consulting.

2. MOTIVATION AND SOLUTION
The intuitive start is to both preserve intrinsic geometry

of the data point cloud and use the information provided
by user. We consider a toy problem of “U” shape which is
shown in Fig. 1 (a) and (b).

(a) Ranking in Linear Space. (b) Ranking in Kernel Space.

Figure 1: Toy example of metric learning for rank-
ing. Red points (left solid points): labeled as “best”;
blue points (right solid points): labeled as “worst”.
Blank points are unlabeled data, which reveal the
manifold geometry.

In general, if no human knowledge is available, the com-
puter does not know which point is “good” and which point
is “bad”. The two coordinates in Fig. 1 may have the same
weight. Contrarily, if we allow the user to provide the most
certain points, it will lead to a more meaningful ranking re-
sult. In Fig. 1 (a), we see that, labeling the points in the
left as “best” and the points in the right as “worst”, we may
probably select x axis as the important feature. Note that
the projection direction of the linear transformation may be
similar to the one of Fisher. However, there are many un-
labeled data which show that the “U” shape is a non-linear
manifold. Ideally, the good ranking result should be along
the manifold which is shown in Fig. 1 (b). Using only lin-
ear transformation can not discover the intrinsic geometry.
Thus, we need to embedded the data into a non-linear space.
This can be solved by using the kernel trick [6, 8].

We denote the input points as D = {X,Y}. There are
l points having been appointed by human as the most cer-
tain points and u unlabeled points. Then, the observed in-
put points can be written as X = (XL,XU ), where XL =
(x1, x2, ..., xl) and XU = (xl+1, xl+2, ..., xl+u). Each point
x ∈ R

d is a d-dimensional vector. The goal of our lin-
ear transformation algorithm is to find a projection matrix
W ∈ R

d×m that transforms the original Euclidean space to
a more informative space for ranking.

To maximize the distances between the projected values
of the most certainly “good” and “bad” points, we have the
following objective function:

w
T
j XLLbX

T
Lwj . (1)

where wj is the jth projection direction. The graph Lapla-
cian Lb is defined based on the graph which is constructed
by the labeled data. Specifically it is Lb = Db − Ab, where

(Db)ii =
∑

j
(Ab)ij and

(Ab)ij =

{

1

l
− 1

lk
1

l

xi and xj belong to the kth concept
otherwise

.

(2)
lk is the number of the points labeled as the kth concept.
Actually, Db is a zero matrix since the sum of rows of Ab

are zeros.
To formulate the information provided by unlabeled data,

we define G = (V, E) as a weighted neighborhood graph to
describe point cloud X. V is the vertex set of graph. E is
the edge set which contains the pairs of neighboring vertices
(xi, xj). A typical adjacency matrix A of neighborhood
graph is:

Aij =

{

exp{−
‖xi−xj‖

2

2σ2 } if (xi, xj) ∈ E

0 otherwise
. (3)

Then the normalized graph Laplacian of a neighborhood
graph [2] is:

L = I − D− 1

2 AD− 1

2 , (4)

where the diagonal matrix D satisfies Dii = di, and di =
∑l+u

j=1
Aij is the degree of vertex xi.

Based on the information provided by user and the ob-
served data points, the learning work is to find a projection
that can balance two terms. The first term is the force that
makes the most certain points be mostly separated. The sec-
ond term is considered as a spring that preserves the intrinsic
structure of the data point cloud. The two forces are also
shown in Fig. 1. Generalizing to the multi-dimensionality
case, we have the following objective function:

W∗ = arg max
W∈R

d×m

|WT XLLbX
T
LW|

|WT XLXT W|
. (5)

where W = (w1, w2, ..., wc) ∈ R
d×m is the projection ma-

trix. Then the objective function (5) has the solution:

XLXT
w

∗
j = ηjXLLbX

T
Lw

∗
j j = 1, ..., m, (6)

where w
∗
j
′s (j = 1, ..., m) are the eigenvectors corresponding

to the m largest eigenvalues ηj
′s of (XLXT )−1XLLbX

T
L .

3. EXPERIMENTS ON DIGITS IMAGE DATA
We test the algorithms with the USPS digits image data

set.1 User submit a query example and the computer re-
trieves and ranks the points in the observed data base. The
retrieval accuracy is defined as:

Accuracy =
relevant examples in top N returns

N
. (7)

The original database contains 7291 training data and 2007
test data, and each data point is an image with 16 × 16
resolution. All data are “0”-“9” digit representations.

We test our algorithms with PCA [3], LDA [4], LPP [5]
and the existent corresponding kernel versions. We ran-
domly select 3000 data points as seen and 3000 data points
unseen. Then seen data is randomly splitted into labeled
and unlabeled data. For unsupervised methods PCA and
LPP, we use the seen data to find the projection vectors.
For supervised method LDA, we use the labeled data in the
first d − 1 dimensions in PCA sub-space as input features.

1http://www.kernel-machines.org



For our semi-supervised distance metric learning algorithm
(SSDML), we make use of the partially labeled seen data in
the d − 1 dimensions in PCA sub-space as input features.
For kernelized version, we directly input the original vector
of digit images. New distance metric is adopted to test the
retrieval accuracy on the unseen set to find the first K near-
est neighbors in the training set. The retrieved number K

is set to 20. Results are shown in Fig. 2 (a) and (b). Each
test accuracy is an average of 50 random trials. We see that
SSDML is competitive with PCA and LPP, and significantly
better than LDA. SSKDML (kernelized SSDML) even out-
performs KPCA and KLDA. It is shown that the accuracy
rate is near 90% when we only label 10 points in each class.
We also vary the retrieved numbers to show the accuracy
differences. We select retrieved numbers as 5, 20, 50 and
100 and the average accuracy rates of 50 random trials are
shown in Fig. 2 (c) and (d). As expectation, the accuracy
decreases when the retrieved number increases.
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(a) Different labeled numbers,
linear.
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(b) Different labeled numbers,
kernel.
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(c) Different retrieved num-
bers, linear.
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(d) Different retrieved num-
bers, kernel.

Figure 2: Query Results: USPS data set, digits “0”-
“9”. Each test accuracy is an average of 50 random
trials.

4. APPLICATION TO HOUSING POTEN-
TIAL ESTIMATION

In this section, we present another application, which is
the computer aided housing potential estimation and loca-
tion recommendation system. As we know, the factors that
can affect the housing value are numerous. Therefore, to
rank the value of different housing location is difficult for
human. The most usually adopted foregoing method for
business consultants is simple: they multiply a weight to
each feature and then combine them together. However,
the results may be not sufficiently good. In this experiment,
we show that our algorithm can efficiently solve this problem
and it has been embedded in a real system for consultants’
work.

To estimate whether there is big value at a location for
housing, consultants should investigate several factors around

Figure 3: An example of map with housing locations
and their impact factors. Factors around the hous-
ing location within a million square meters should
be considered as features for ranking.

the housing location within a million square meters2. First,
they count the commercial services sites such as shopping
centers, banks, supermarkets, carnies and amusement parks
and so on. Second, they count the social service sites such as
hospitals, hotels, schools and colleges. Third, they evaluate
traffics such as bus and subway stations, even the railway
and air stations. Other sites such as restaurants and bars
are also considered. After counting the units, they normalize
them as probabilities. Moreover, environmental and social
conditions around the housing location should also be eval-
uated. Finally, we obtain a vector that contains 32 features
to represent housing potential factors. The main features
are shown in Fig. 3. Only 47 housing locations are plotted.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−5

0

5

10

15 x 10−11

89
2

7

132611
1

14
21

19

15
20

23

5

24

10

17

25

12
18

3

34
37

35
3340

27
4

38

32

36

2831
622

29

42

43

47

16

30

39

44
41

45

46

(a) 2D visualization.
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Figure 4: An example of a small set (47 points). The
areas under the ROC curve and convex hull of ROC
curve are: AUROC=0.8303, AUROCCH=0.8744.

We first present a result that uses the 47 locations plot-
ted in Fig. 3, since only these samples has manually ranking
values. We appoints the first four most certainly “good” lo-
cations and last four most certainly “bad” locations as the
labeled points. After running our algorithm SSKDML, a 2D
visualization of these 47 points is plotted in Fig. 4 (a). Each
location has an ID for distinguishing. We can see that the
data is reduced to one dimension, since the second dimension
is scaled to 10−11. The ROC (receiver operating character-
istic) curve and its convex hull are plotted in Fig. 4 (b). The

2While different countries may have different factors, we
only present a case study of a city in China.



Table 1: Numerical Comparison Results.

Methods AUROC AUROCCH
Linear PCA 0.7783 0.8248

LDA 0.7534 0.8066
SSDML 0.7805 0.8326

Non-Linear LapEigs 0.8032 0.8529
LLE 0.8077 0.8586
LTSA 0.7534 0.8179
KLDA 0.7828 0.8484

SSKDML 0.8303 0.8744

areas under the ROC curve and convex hull of ROC curve
are: AUROC=0.8303, AUROCCH=0.8744. It is acceptable
since even manually labeled rank value has mistakes. We
also compare the proposed algorithm with some linear and
non-linear metric learning algorithms: PCA, LDA, kernel
LDA (KLDA), Laplace Eigenmaps (LapEigs) [1], LLE [7]
an LTSA [10]. Table 4 shows that SSKDML gives the best
result.

To show the efficiency of our algorithm, we also plot a vi-
sualization results of 497 points with the same labeled data
as the 47 points case. In Fig. 5 (f), we can see that the
points is also reduced to one dimension for our algorithm
SSKDML, since there are two coordinates scaled to 10−7.
The other linear and non-linear methods also give visual-
ization results in Fig. 5 (a)-(e). However, they show less
ranking information.

5. CONCLUSIONS
In this paper, we present a novel type of domain knowl-

edge for ranking, where only most certain points are pro-
vided by user. Having this domain knowledge, we can (1)
give an order of the observed data points, (2) retrieve from
an observed data base by querying new points. We pro-
pose a distance metric learning algorithm to deal with the
new domain knowledge and can be used both for regression
and for retrieval by querying. Experiments show that the
semi-supervised method can improve the retrieval accuracy.

Besides giving the test results on the benchmark set, we
also show an application to computer aided housing poten-
tial estimation and location recommendation problem. The
implemented algorithm has been used in practice. The com-
puter ranking results are satisfactory compared to the man-
ually ranking value. It saved much time for consultants.
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