
New Boosting Methods of Gaussian Processes for
Regression

Yangqiu Song
State Key Laboratory of

Intelligent Technology and Systems
Department of Automation

Tsinghua University
Beijing 100084, P.R.China

E-mail: songyq99@mails.tsinghua.edu.cn

Changshui Zhang
State Key Laboratory of

Intelligent Technology and Systems
Department of Automation

Tsinghua University
Beijing 100084, P.R.China

E-mail: zcs@mail.tsinghua.edu.cn

Abstract— Feed forward neural networks are popular tools
for nonlinear regression and classification problems. Gaussian
Process(GP) can be viewed as an RBF neural network which
have infinite number of hidden neurons. On regression problems,
they can predict both the mean value and the variance of the
given sample. Boosting is one of the most important recent
developments in machine learning. Classification problems have
dominated research on boosting to date. On the other hand, the
application of boosting of regression has received less investiga-
tion. In this paper, we develop two boosting methods of GPs for
regression according to the characteristic of them. We compare
the performance of our ensembles with other boosting algorithms
and find that our methods are more stable and essentially have
less over-fitting problems than the other methods.

I. I NTRODUCTION

Neural networks are popular tools for nonlinear regression
and classification problems. Mackay[10] points that, feed
forward neural networks can be viewed as defining a prior
probability distribution over non-linear functions, and the
neural network’s learning process can be interpreted in terms
of the posterior probability distribution over the unknown
function. Neal[11][12] shows that the properties of an RBF
neural network with one hidden layer converges to a Gaussian
process as the number of hidden neurons tends to infinity when
the prior of the parameters is Gaussian. Thus, we can ignore
the parameters of the neural networks and work directly with
the input and the output of the data. We find that Gaussian
process has a good characteristic that is not possessed by
many other non-parametric regressors. It can not only regress
the mean value of the given point, but also can estimate the
variance. In bayesian inference framework, it can use the
MCMC technique or MAP estimation to solve the hyper-
parameters’ problem[10][12][15], compared with other kernel
methods such as the Support Vector Machine(SVM)[14] which
needs users give the value of the hyper-parameters. However,
its training time is scaling ofO(n3) and memory is scaling
of O(n2), where n the number of training points, hinder their
more widespread application. But recently, there have been
several sparse online algorithms such as [8] and [9], which
make Gaussian process more and more popular. The main
work of Gaussian processes for regression is done by Williams

and Rassmussen[15], Neal[11], we also follow the introduction
made by MacKay[10] in this paper.

On the other hand, for a wide variety of machine learning
problems, especially the classification problems, the boosting
techniques have been proven to be an effective method for re-
ducing bias and variance, and improving misclassification[1].
But the knowledge about the utility of these techniques
in regression is not as much as classification. Freund and
Schapire[4][5] attacks the regression problem by reducing it
to a classification problem using their algorithm AdaBoost.R.
Druck[2] and Ridgewary, et al[13] suggest an actual imple-
mentation and experimentation with boosting regression in
which they applies an ad hoc modification of AdaBoost.R
to some regression problems respectively. Friedman, et al[6]
explore regression using the gradient descent approach. They
explain the AdaBoost as an additive logistic regression model.
They model the posterior probability asP (x) = P (y =
1|x) = eF (x)/(1+eF (x)), and use some AdaBoost algorithms
to regress the additive functionF (x). But it is essentially a
classification model. In the absence of the hypothesis that the
target value is binary, the algorithm could not be explained
in theory. Duffy and Helmbold examine ensemble methods
by iteratively calling them on modified samples, the present
several gradient descent algorithms and prove AdaBoost-like
bounds on their sample errors using intuitive assumptions
on the base learners. They use a decision stumps as a base
learner and the main weakness of their theoretical results is
the assumption that the base learner can consistently return hy-
potheses with a useful edge, even when the data are re-labelled
by the master algorithm. Zemel and Pitassi[16] propose an
analogous formulation for adaptive boosting of regression
problems, utilizing a novel objective function that leads to a
simple boosting algorithm. They use a back-propagation neural
networks as the the base learner and prove that the method
reduces the training error. But they only give a result that has
only 10 iterations, in this paper, our experiment shows that, if
there is one criterion to stop the algorithm, their boosting is
very likely to exhibit over-fitting.

In this paper, mainly based on the work of Zemel and
Pitassi[16], we present a new objective function according to



the characteristic of Gaussian process which can estimate the
variance of the given sample. The methods can also work with
other regressors if only it can return a estimated value and a
variance at the test sample. Results show that our methods
are more stable than the other methods and exhibit no over-
fitting problems at all. The paper is organized as follows. In
section 2, we give an short introduction to Gaussian process
for regression that MacKay[10] gives in their paper. Starting
from section 3, we present our two methods of ensembling
the regressors. Experimental results are given in section 4 and
section 5 we conclude the text and show the future work.

II. A SHORT INTRODUCTION TOGAUSSIAN PROCESS

Firstly, we define some notations. Here we only introduce
the basic Gaussian process for regression problems, following
the methods introduced by MacKay[10]. Since Gaussian pro-
cess is very similar to Bayesian neural networks, we follow
the notation of them. We denote the training set of N data
points asXN

∆=
{
x(n)

}N

n=1
, their target set istN

∆= {tn}N
n=1.

In neural networks, we have a non-linear functiony(x), with
respect to the parameterw.

In parameter approach to regression such as RBF neural
networks, we use H fixed basis functions. Let us assume that
a list of N input pointsXN has been specified and define
the N×H matrix R to be the matrix of values of the basis
functions at the points:Rnh = φh(x(n)). And then define the
vectoryN to be the vector of values ofy(x) at the N points:
yn =

∑
h

Rnhwh. If the prior distribution ofw is Gaussian

with zero mean:P (w) = N(0, σ2
wI), theny, being a linear

function ofw, is also Gaussion distributed with zero mean.The
covariance matrix is:

Q =
〈
y,yT

〉
=

〈
Rw,wT RT

〉

= R
〈
w,wT

〉
RT = σ2

wRRT (1)

So the prior distribution ofy is:

P (y) = N(0,Q) = N(0, σ2
wRRT ) (2)

We call y(x) is a Gaussian process if for any fi-
nite selection of pointsx(1),x(1), ...,x(N), the joint density
P (y(x(1)), y(x(1)), ..., y(x(N)))is Gaussian.

For regression problems, we assume the target and the
corresponding estimation function differ by a Gaussian noise
of varianceσ2

v : t = y + v, P (v) = N(0, σ2
v), then the prior

distribution of target vector is also Gaussian:

P (t) = N(0,Q + σ2
vI) = N(0,C) (3)

We denote the covariance matrixC by:

C = σ2
wRRT + σ2

vI (4)

When the neuron’s number of the RBF neural networks in-
creases to infinite, it is proved[10] that the entry of covariance
matrix C has the form:

C(x,x′) = θ1 exp

[
−1

2

D∑

i=1

(xi−x′i)
2

r2
i

]
+ θ2 (5)

wherexi is the ith component ofx, D is the dimension of
the data space, andΘ = {θ1, θ2, {ri}} is a set of hyper-
parameters. We can use the MCMC technique[12][15] or a
MAP estimation[10][15] to obtain them, in this paper, we
adopt the latter.

We now distinguish between different sizes of covariance
matrix C with a subscript, we define sub-matrices ofCN+1

as follow:

CN+1 =
[

CN k
kT κ

]
(6)

According to the partitioned inverse equations, we have:

C−1
N+1 =

[
M m
mT µ

]
,M = C−1

N + 1
µmmT ,

µ =
(
κ− kT C−1

N k
)−1

,m = −µC−1
N k.

(7)

So the inference of a new target is a conditional distribution
which is also Gaussian:

P (tN+1 |tN ) =
1
Z

exp

[
− (tN+1 − t̂N+1)2

2C2
t̂N+1

]
(8)

where:

t̂N+1 = kT C−1
N tN C2

t̂N+1
= κ− kT C−1

N k (9)

Thus we get the predictive mean value and the variance
which define the error bars at the new given point. Due to the
characteristic of estimation of mean and variance, we develop
two ensemble methods to boost the Gaussian process to get
more efficient regressors. One is a AdaBoost-like algorithm,
the other is a bias/variance decomposition based method.

III. E NSEMBLES OFGAUSSIAN PROCESSES

Zemel and Pitassi[16], in their paper, present a gradient
based Boosting algorithm for regression problems. The method
is different from AdaBoost.R which is proposed by Freund
and Schapire[4][5], which is not directly used to a regression
problem. And also, it is different with the methods of Duffy
and Helmbold[3] which do not resample the training data
through a new distribution at each iteration, but to modify the
target value of the training data. They define a new objective
function:

JT =
1
n

N∑

i=1

(
T∏

t=1

βt
− 1

2

)
exp

[
T∑

t=1

βt

(
ti − yt(x(i))

)2
]

(10)
This is the cost afterT iterations to minimize the over all
exponentiated squared error and can be viewed as minimizing
the T hypothesis’ error over distribution of the training data:

JT =
1
n

N∑

i=1

([
T−1∏
t=1

βt
− 1

2

]
exp

[
T−1∑
t=1

βt

(
ti − yt(x(i))

)2
]

βT
− 1

2 exp
[
βT

(
ti − yT (x(i))

)2
])

=
N∑

i=1

ω
(i)
t βT

− 1
2 exp

[
βT

(
ti − yT (x(i))

)2
]

(11)



They compare the objective with a probabilistic expression.
They point that the objective function can be viewed as a
product of the reciprocal likelihood at each iteration, while
the likelihood function is:

g(yt|x(i),M) = (2πβt)−
1
2 exp

[
−1

2
βT

(
ti − yt(x(i))

)2
]

(12)
This can be theoretically interpreted, but in practice, we find

that after many iterations, their method will seriously meet
a over-fitting problem if without a stop criterion. To avoid
of this, we present two novel methods that can stably boost
GPs and without any over-fitting problems. We first present an
AdaBoost-like algorithm which modifies the objective function
of Zemel and Pitassi’s and develop a new method of updating
the weight. Further more, we use a new method to combine
regressors using the bias/variance based composition algorithm
while maintain our objective function unchanged.

A. An AdaBoost-Like Ensemble

1) Algorithm: The two crucial elements of boosting algo-
rithm are the way in which a new distribution is constructed
and the way in which hypotheses are combined to produce a
new output[16]. We assume that the method of ensembling the
GPs follows the way which Zemel and Pitassi do:

ȳ(x(i)) =
∑

t βtyt(x(i))∑
t βt

(13)

wherex(i) is the point which we want to know the target value,
yt is the hypotheses which a GP outputs at each iteration, and
βt is the combination coefficient of each GP.

Since at each iterationt the GP estimates the value of
a given point is Gaussian, we can rewrite the Gaussian
formulation as:

ti − yt(x(i)) ∼ N(0, Ct(x(i))) (14)

where ti is the target value of a given pointx(i). Thus the
difference between target and the hypotheses of the combined
regressor is also Gaussian:

ti − ȳ(x(i)) = t−
∑

t βtyt(x(i))∑
t βt

=
∑

t βt(t− yt(x(i)))∑
t βt

∼ N(0,

∑
t βtCt(x(i))∑

t βt
) (15)

We use the reciprocal likelihood, the new objective function
is:

JT =
1
n

N∑

i=1

C̄
1
2
T (x(i)) exp

[
1
2

(
ti − ȳT (x(i))

)2

C̄T (x(i))

]
(16)

where:

ȳT (x(i)) =

T∑
t=1

βtyt(x(i))
∑

t βt
, C̄T (x(i)) =

T∑
t=1

βtCt(x(i))
∑

t βt
(17)

The minimizing of this function (16) is equal to maximizing
the likelihood function of the combined regressor. Since we

can not decompose the functionJT to a function ofy1...yt−1

and a function ofyt, we need some approximation.
Zemel and Pitassi’s method has an intuitional meaning that

the weight is proportional to the reciprocal likelihood: when
at the formert− 1 iterations the likelihood’s product is small
at a given training point, meaning that the uncertainty of the
regression result is large, so the weight of the point is large
which makes more points are re-sampled in the next iteration.
Fig.1 shows that the variance is a function of the training data’s
density, the error bars increase where the data point density
decreases. We simply modify the update rule of the weights
to get some interesting results. At iterationt, we assume the
weight is proportional to a function of the average predicting
variance which is estimated using the formert− 1 iterations:

ω
(i)
t ∝ C̄

1
2
t−1(x

(i)) exp(−C̄t−1(x(i))) (18)

When the average variance is varying from 0 to 1, the weight
is a monotonously increasing function with the variable. In
practice, we find that the average variance varies not so
suddenly as the likelihood function, and this method will
not cause the accumulation of the weight which will cause
the over-fitting problem. According to the constraint of the
objective function, our Boosting can get a more stable result.
The flow chart of the algorithm is shown in Table I.

−15 −10 −5 0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

X

Y

(a) training data

−15 −10 −5 0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) regression result

Fig. 1. A simple function regression result. Left: the training data and the
true function; Right: the GP regression result(include mean and variance).

TABLE I

ADABOOST-L IKE ENSEMBLE ALGORITHM

1.Input:

Training set examples
{
x(n), tn

}N

n=1
.

Base learner: Learning a Gaussian process produces a hypothesis.

2.Choose an initial distributionω(i)
1 = 1

n
.

3.Iterate:

a) Learn a Gaussian process to regress a function

with distributionω
(i)
t .

b) Set0 ≤ βt ≤ 1to minimizeJt.

c) Update training distribution:

ω
(i)
t+1 ∝ C̄

1
2
t (x(i)) exp(−C̄t(x(i))).

4.Estimate the output :̄yT (x(i)) =
∑T

t=1 βtyt(x
(i))∑

t βt
.



2) An EM View: According to our method, we can rewrite
the objective function as:

JT =
1
n

N∑

i=1

ω
(i)
T exp

[
1
2

(
ti − ȳT (x(i))

)2
]

(19)

ω
(i)
T is not same the weight we mention before, but a function

of predictive variance, we rewrite formula (18) as:

ω
(i)
t ∝ Ĉ

1
2 (x(i)) exp(−Ĉ(x(i))) (20)

where Ĉ is the predictive variance at each iteration. Then
the new objective function can be viewed as an exponential
squared error over a certain distributionL. Hence, we can infer
some interesting results from the squared error:

(ti − ȳT (x(i)))2

= (
∑T−1

t=1 βt(ti − ȳT−1(x(i)) + βT (t− yT (x(i)))∑T−1
t=1 βt + βT

)2

≤ 2
(
∑T−1

t=1 βt)2(ti − ȳT−1(x(i)))2 + β2
T (t− yT (x(i)))2

(
∑T−1

t=1 βt + βT )2
(21)

We then use a EM view to examine the objective function
(19). At E-step, we estimate latent variables: the mean value
ȳT−1 and the average predictive varianceC̄T−1(x(i)), and then
use a functionω(i)

t ∝ Ĉ
1
2 (x(i)) exp(−Ĉ(x(i))) to generate a

distribution to re-sample the data set. At M-step, we want
to find a new regressor̄yT that have minimum squared error
with a optimal parameterβT . The parameterβT is to make the
objective function (16) minimized, that is to make the likeli-
hood maximized. According to the right side of the inequality
(21), the M-step can be viewed as another objective function
which is generated after re-sampling. We can regard it as to
optimize the function

(
t− yT (x(i))

)2
under the constraint of(

ti − ȳT1(x(i))
)2

= 0 where the Lagrange factor is :

(
T−1∑
t=1

βt

)2

β2
T

(22)

B. Bias/Variance Decomposition Based Boosting

In the previous sub-section we give an ensemble method
which is similar to Zemel and Pitassi’s. But we do not use
a decomposition form of the weight and the new regressor
with the objective function (16). Instead, we use an ad
hoc technique that intuitionally uses a function of variance
to update the weights. Heskes[7] in his paper proves an
interesting conclusion: the mean squared error is a special
case of the Kullback-Leibler divergence of his bias/variance
decomposition model. If a regressor can estimate the mean
value and the variance of the given point, we can use a new

ensemble method to obtain the average:

C̄T (x(i)) =
1∑

t 1/Ct(x(i))

ȳT (x(i)) = C̄T (x(i))
T∑

t=1

yt(x(i))
Ct(x(i))

(23)

Then the decomposition yields:

E

[
(yt(x(i))− ti)2

Ct(x(i))
+

1
2

log Ct(x(i))
]

=
[
(ȳ(x(i))− ti)2

C̄(x(i))
+

1
2

log C̄(x(i))
]

+ E

[
(yt(x(i))− ȳ(x(i)))2

Ct(x(i))
+

1
2

log
Ct(x(i))
C̄(x(i))

]
(24)

The first term between brackets on the righthand side is the
error of the average model, the second term measures the
variance of the different estimators. And also the first term of
the righthand is a logarithmic form of our objective function.
We rewrite the formula (24) in the exponential form as:

JT =
1
n

N∑

i=1

C̄
1
2
T (x(i)) exp

[
1
2

(
ti − ȳT (x(i))

)2

C̄T (x(i))

]

=
1
n

N∑

i=1

exp
{

E

[
1
2

(ti − yt(x(i)))2

Ct(x(i))
+

1
2

log Ct(x(i))
]

− E

[
1
2

(yt(x(i))− ȳ(x(i)))2

Ct(x(i))
+

1
2

log
Ct(x(i))
C̄(x(i))

]}

(Jensen′s inequality)

≤ 1
n

N∑

i=1

E exp
{[

1
2

(ti − yt(x(i)))2

Ct(x(i))
+

1
2

log Ct(x(i))
]

−
[
1
2

(yt(x(i))− ȳ(x(i)))2

Ct(x(i))
+

1
2

log
Ct(x(i))
C̄(x(i))

]}
(25)

We find that between the exponential brackets the first term can
not be used to estimate the new regressor, therefore we simply
use a new regressor to replace the formerT − 1 iterations’.
This instant estimate which replaces the expectation leads to a
new boosting algorithm. We develop a new objective function
as:

Jnew
T

∆=
1
n

N∑

i=1

E




(
C

1
2
T (x(i))

)
exp

{
1
2

(ti−yT (x(i)))2

CT (x(i))

}

exp
{

1
2

(yt(x(i))−ȳ(x(i)))2

Ct(x(i))
+ 1

2 log Ct(x(i))
C̄(x(i))

}




=
N∑

i=1

ω
(i)
T

(
C

1
2
T (x(i))

)
exp

{
1
2

(
ti − yT (x(i))

)2

CT (x(i))

}
(26)

where

ω
(i)
T ∝ E

1

exp
{

1
2

(yt(x(i))−ȳ(x(i)))2

Ct(x(i))
+ 1

2 log Ct(x(i))
C̄(x(i))

}

≈
T−1∑
t=1

(
Ct(x(i))
C̄(x(i))

)− 1
2

exp
[
−1

2
(yt(x(i))− ȳt(x(i)))2

Ct(x(i))

]

(27)



Note that we express the objective function as a decom-
position form which has a weightω(i)

T and a new reciprocal
likelihood. The weight is approximate to the likelihood of each
regressor to their average. This indicates that the weight is
large at the stable points of the regressors. The flow chart of
this algorithm is shown in Table II.

TABLE II

BIAS/VARIANCE DECOMPOSITION BASEDBOOSTING

1.Input:

Training set examples
{
x(n), tn

}N

n=1
.

Base learner: Learning a Gaussian process produces a hypothesis.

2.Choose an initial distributionω(i)
1 = 1

n
.

3.Iterate:

a) Learn a Gaussian process to regress a function

with distributionω
(i)
t .

b) Update training distribution:

ω
(i)
t+1 ∝

t∑
j=1

(
Cj(x(i))

C̄(x(i))

)− 1
2

exp

[
− 1

2

(yj(x(i))−ȳj(x(i)))2

Cj(x(i))

]
.

4.Estimate the output :

C̄T (x(i)) = 1∑
t 1/Ct(x(i))

,

ȳT (x(i)) = C̄T (x(i))
T∑

t=1

yt(x
(i))

Ct(x(i))
.

IV. M AIN RESULTS

In this section we show some results to see how the
methods above perform. We also implement two methods
which are given by Duffy and Helmbold in [3]: SquareLevR
and ExpLev, and also Zemel and Pitassi’ algorithm[16] naming
nips-boosting. We use a MSE(mean squared error) to be a
criterion function. In fig.2 theln(MSE) is adopted to be
the output of each iteration. We test our algorithm using the
following functions and data sets:

1) Sinc functiont = sin(x)/x + ε:
x ∈ U [−10, 10], ε ∼ N(0, 0.1).

2) t = sin(x) + 0.01x2 + ε:
x ∈ U [−10, 10], ε ∼ N(0, 0.1).

3) A Planet = 0.6x1 + 0.3x2 + ε:
x ∈ U [−1, 1], ε ∼ N(0, 0.5).

4) Friedman1:
t = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε.
x1 ∼ x5 ∈ U [0, 1], ε ∼ N(0, 0.2).

5) Friedman2:

t =
[
x2

1 +
(
x2x3 − 1

x1x4

)2
] 1

2

+ ε.

6) Friedman3:

t = tan−1 x2x3− 1
x1x4

x1
+ ε.

For both 5 and 6:x1 ∈ U [0, 100]
x2 ∈ U [40π, 560π]
x3 ∈ U [0, 1]
x4 ∈ U [1, 11],
ε ∼ N(0, 0.2).

7) Boston Housing: This dataset contains information col-
lected by the U.S Census Service concerning housing
in the area of Boston Mass. It comprises 506 examples
with 14 variables and the results are given for the task
of predicting the median house value from the other 13
variables. We normalize the target value within the range
from -1 to 1.

8) Abalone: This data set comes from the UCI repository
of machine learning databases. The task is to predict the
age (number of rings) of abalone from physical measure-
ments. We treat the output as a continuous variable, even
though it is a positive integer with a maximum value of
29. The input variables is 8 dimension vectors, the target
is the normalized value of a fish’s age. There are totally
4177 examples in the data set.

For function 5, 6 and data set 8, we simply normalize the
input vectors to the range from -1 to 1, while for data set 7,
being too many variables of 0, is performed PCA to reduce
to 5 dimensions. For function 1 to 6, we select 100 random
samples for training and 500 random samples for testing. For
data set 7, we randomly select 100 samples for training and
the rest for testing. For data set 8, we randomly select 300
samples for training and 2000 samples for testing.

TABLE III

MSE RESULT OF8 DATASETS

SquareLevR ExpLev Nips Our 1 Our 2

t = sin(x)/x 0.0025 0.0024 0.0025 0.0021 0.0024

t = sin(x) + 0.01x2 0.0026 0.0030 0.0032 0.0018 0.0019

t = 0.6x1 + 0.3x2 0.0396 0.0682 0.0609 0.0193 0.0125

Friedman1 0.0851 0.0692 0.0340 0.0209 0.0188

Friedman2 0.1094 0.0660 0.0239 0.0186 0.0181

Friedman3 0.0940 0.0688 0.0705 0.0522 0.0464

Boston Housing 0.2203 0.2096 0.1768 0.1238 0.1139

Abalone 0.0345 0.0378 0.0357 0.0251 0.0250

Table III shows the main results of 8 functions and data
sets, each row has 5 algorithms implementation playing on
the signed data set as column 1 shows. The best MSE value is
highlighted with a bold font. Fig.2 shows the 500 iterations of
each algorithm played on each data set. Note that for simple
functions, SquareLevR and ExpLev will converge to some
fixed value which may be not the best. For complex functions
and real data sets, these two algorithms will diverge to some
unexpectable value. This is an over-fitting problem because
these algorithm will modify the target which is relative to
the residual of the hypotheses value at each iteration, then
use an additive model to represent the final result, so the
learner will learn until the residual is 0. Nips-boosting rapidly
descends with in 10 or 20 steps, but it will also over-fit after
20 or 30 iterations. The reason is that, after several steps of
iterations, the weight will accumulate at some certain samples.
The product of the reciprocal likelihood is very large at some
samples and will not diminish any more.



0 100 200 300 400 500
−6.6

−6.4

−6.2

−6

−5.8

−5.6

−5.4

−5.2

−5

Iterations

Lo
g 

M
S

E

SquareLevR
ExpLev
nips BoostingGP
our BoostingGP1
our BoostingGP2

(a) t = sin(x)/x

0 100 200 300 400 500
−6.5

−6

−5.5

−5

Iterations

Lo
g 

M
S

E

SquareLevR
ExpLev
nips BoostingGP
our BoostingGP1
our BoostingGP2

(b) t = sin(x) + 0.01x2

0 100 200 300 400 500
−5

−4.5

−4

−3.5

−3

−2.5

Iterations

Lo
g 

M
S

E

SquareLevR
ExpLev
nips BoostingGP
our BoostingGP1
our BoostingGP2

(c) t = 0.6x1 + 0.3x2

0 100 200 300 400 500
−4.2

−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

Iterations

Lo
g 

M
S

E

SquareLevR
ExpLev
nips BoostingGP
our BoostingGP1
our BoostingGP2

(d) Friedman1

0 100 200 300 400 500
−4.2

−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

Iterations

Lo
g 

M
S

E

SquareLevR
ExpLev
nips BoostingGP
our BoostingGP1
our BoostingGP2

(e) Friedman2

0 100 200 300 400 500
−3.1

−3

−2.9

−2.8

−2.7

−2.6

−2.5

−2.4

−2.3

−2.2

Iterations

Lo
g 

M
S

E

SquareLevR
ExpLev
nips BoostingGP
our BoostingGP1
our BoostingGP2

(f) Friedman3

0 100 200 300 400 500
−2.2

−2.1

−2

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

Iterations

Lo
g 

M
S

E

SquareLevR
ExpLev
nips BoostingGP
our BoostingGP1
our BoostingGP2

(g) Boston Housing

0 100 200 300 400 500
−3.75

−3.7

−3.65

−3.6

−3.55

−3.5

−3.45

−3.4

−3.35

−3.3

−3.25

Iterations

Lo
g 

M
S

E

SquareLevR
ExpLev
nips BoostingGP
our BoostingGP1
our BoostingGP2

(h) Abalone

Fig. 2. 500 iterations on 8 data sets of 5 algorithms

Compared with the former three, our algorithm has no over-
fitting problems at all, and the descending speed is also compa-
rable to the other three. The AdaBoost-like ensemble method
is the slowest of five since we use a Genetic Algorithm(GA)
to optimize the objective function (16) to get a newβt. In
practice, after several iterations, most of the parameterβt is
0 or 1, we assumeβt only to be 0 or 1, then we can get a
bagging-like expression. Whent tends to infinity, we have:

∑
t
βtyt(x(i))

/∑
t
βt

∣∣∣
t→∞

→ E(y) (28)

This shows that, if atT − 1 iteration our combined regressor
is very nearly to the expectationE(y), then the parameter
βt is very likely to be 0. On the other hand, the bias/variance
decomposition based Boosting algorithm dose not optimize an
objective function over a parameter, but to update the weight
and get a new hypotheses of Gaussian process over the weight.
So this algorithm will rapidly converge to a certain value.

And for a majority of the results, this method is better to the
AdaBoost-like ensemble method.

V. CONCLUSIONS

In this paper, we first give an AdaBoost-like algorithm
which modifies the objective function of Zemel and Pitassi’s
and develop a new method of updating the weight. Secondly,
we adopt a new method to combine regressors using the
bias/variance based composition algorithm while maintain our
objective function unchanged. Experimental results indicate
that our methods are comparable with others on descend
speed and will not exhibit any over-fitting problems. But our
methods also have some problems. Firstly, we use some ad hoc
techniques to update the weights of the training samples, espe-
cially in bias/variance decomposition based Boosting method,
it has no interpretation in theory; Secondly, we only show the
algorithms and the experimental results while do not give any
proof of convergence. In the future work, we will prove our
algorithm in theory.

Boosting of regressors is not received as much attention as
the classification problems, we give two Boosting methods and
obtain some interesting results. We expect that the boosting
methods of regression will be paid more attention in the future.

REFERENCES

[1] E. Bauer and R. Kohavi, ”An empirical comparison of voting classifi-
cation algorithms: Bagging, boosting, and variants,”Machine Learning,
vol. 36:1/2, pp. 105–39, 1999.

[2] H. Drucker, ”Improving regressors using Boosting techniques,”Proceed-
ings of the 14th International Conference on Machine Learning, pp. 107–
115, 1997.

[3] N. Duffy and D. Helmbold, ”Boosting methods for regression,”Machine
Learning, vol. 47, pp. 153–200, 2002.

[4] Y. Freund and R. E. Schapire, ”Experiments with a new Boosting
algorithm,” In Proc. 13th International Conference on Machine Learning
pp. 148–156, San Matco, CA: Morgan Kaufmann, 1996.

[5] Y. Freund and R. E. Schapire, ”A decision-theoretic generalization of on-
line learning and an application to boosting,”Journal of Computer and
System Sciences, vol. 55:1, pp. 119–139, 1997.

[6] J. Friedman, T. Hastie and R. Tibshirani, ”Additive logistic regression: A
statistical view of boosting,”The Annals of Statistics, vol. 28:2, pp. 337–
374, 2000.

[7] T. Heskes, ”Bias-variance decompositions for likelihood-based estima-
tors,” Neural Computation, 10, pp. 1425–1433, 1998.

[8] Lehel Csat’o and Manfred Opper, ”Sparse online Gaussian processes,”
Neural Computation, vol. 14 pp. 641–668, 2002.

[9] N. D. Lawrence , M. Seeger and R. Herbrich, ”Fast sparse Gaussian
process methods: the informative vector machine,”Advances in Neural
Information Processing Systems 15, MIT Press, Cambridge, MA, 2003.

[10] D. MacKay, ”Introduction to Gaussian processes,”Technical Report,
Cambridge University, UK, 1997.

[11] R. M. Neal, ”Bayesian Learning for Neural Networks,”in Lecture Notes
in Statistics, Springer, New York, 1996

[12] R.M. Neal, ”Monte Carlo implementation of Gaussian process models
for Bayesian classification and regression,”Technical Report 9702, De-
partment of Statistics, University of Toronto, January, 1997.

[13] G. Ridgewary, D. Madigan and T. Richardson, ”Boosting methodology
for regression problems,” In D. Heckerman, and J. Whittaker(Eds.),Proc.
Artificial Intelligence and Statistics, pp. 152–161, 1999

[14] V. Vapnik, The Nature of Statistical Learning Theory. Springer, 1995.
[15] C. K. I. Williams and C. E. Rasmussen, ”Gaussian processed for

regression,”In Advances in Neural Information Processing Systems 8,
MIT Press, 1996.

[16] R. S. Zemel and T. Pitassi, ”A gradient-based boosting algorithm for
regression problems,” In Advances in Neural Information Processing
Systems, 13, Cambridge, MA. MIT Press, 2001.


