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Abstract—Feed forward neural networks are popular tools and Rassmussen[15], Neal[11], we also follow the introduction
for nonlinear regression and classification problems. Gaussi_an made by MacKay[10] in this paper.
Process(GP) can be viewed as an RBF neural network which o the other hand, for a wide variety of machine learning
have infinite number of hidden neurons. On regression problems, . e .
they can predict both the mean value and the variance of the problgms, especially the classification problems, the boosting
given sample. Boosting is one of the most important recent technigues have been proven to be an effective method for re-
developments in machine learning. Classification problems have ducing bias and variance, and improving misclassification[1].
dominated research on boosting to date. On the other hand, the But the knowledge about the utility of these techniques
application of boosting of regression has received less investiga—in regression is not as much as classification. Freund and

tion. In this paper, we develop two boosting methods of GPs for . . S
regression according to the characteristic of them. We compare Schapire[4][5] attacks the regression problem by reducing it

the performance of our ensembles with other boosting algorithms t0 @ classification problem using their algorithm AdaBoost.R.
and find that our methods are more stable and essentially have Druck[2] and Ridgewary, et al[13] suggest an actual imple-
less over-fitting problems than the other methods. mentation and experimentation with boosting regression in
which they applies an ad hoc modification of AdaBoost.R
to some regression problems respectively. Friedman, et al[6]
Neural networks are popular tools for nonlinear regressi@xplore regression using the gradient descent approach. They
and classification problems. Mackay[10] points that, feezkplain the AdaBoost as an additive logistic regression model.
forward neural networks can be viewed as defining a pridhey model the posterior probability aB(z) = Py =
probability distribution over non-linear functions, and thé|z) = ") /(14 ¢"(®)), and use some AdaBoost algorithms
neural network’s learning process can be interpreted in terasregress the additive functiof'(x). But it is essentially a
of the posterior probability distribution over the unknowrtlassification model. In the absence of the hypothesis that the
function. Neal[11][12] shows that the properties of an RBErget value is binary, the algorithm could not be explained
neural network with one hidden layer converges to a Gaussiantheory. Duffy and Helmbold examine ensemble methods
process as the number of hidden neurons tends to infinity whan iteratively calling them on modified samples, the present
the prior of the parameters is Gaussian. Thus, we can igneeveral gradient descent algorithms and prove AdaBoost-like
the parameters of the neural networks and work directly wittounds on their sample errors using intuitive assumptions
the input and the output of the data. We find that Gaussian the base learners. They use a decision stumps as a base
process has a good characteristic that is not possessedeayner and the main weakness of their theoretical results is
many other non-parametric regressors. It can not only regrélse assumption that the base learner can consistently return hy-
the mean value of the given point, but also can estimate thetheses with a useful edge, even when the data are re-labelled
variance. In bayesian inference framework, it can use tbg the master algorithm. Zemel and Pitassi[16] propose an
MCMC technique or MAP estimation to solve the hyperanalogous formulation for adaptive boosting of regression
parameters’ problem[10][12][15], compared with other kerngroblems, utilizing a novel objective function that leads to a
methods such as the Support Vector Machine(SVM)[14] whigimple boosting algorithm. They use a back-propagation neural
needs users give the value of the hyper-parameters. Howewetworks as the the base learner and prove that the method
its training time is scaling of)(n3) and memory is scaling reduces the training error. But they only give a result that has
of O(n?), where n the number of training points, hinder theionly 10 iterations, in this paper, our experiment shows that, if
more widespread application. But recently, there have betrere is one criterion to stop the algorithm, their boosting is
several sparse online algorithms such as [8] and [9], whigery likely to exhibit over-fitting.
make Gaussian process more and more popular. The maiin this paper, mainly based on the work of Zemel and
work of Gaussian processes for regression is done by WilliafRgassi[16], we present a new objective function according to
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the characteristic of Gaussian process which can estimate Wieere x; is the ith component ofx, D is the dimension of
variance of the given sample. The methods can also work witie data space, an® = {6,,62,{r;}} is a set of hyper-
other regressors if only it can return a estimated value andgarameters. We can use the MCMC technique[12][15] or a
variance at the test sample. Results show that our methdd&P estimation[10][15] to obtain them, in this paper, we
are more stable than the other methods and exhibit no ovadopt the latter.

fitting problems at all. The paper is organized as follows. In We now distinguish between different sizes of covariance
section 2, we give an short introduction to Gaussian procasatrix C with a subscript, we define sub-matrices @f

for regression that MacKay[10] gives in their paper. Startings follow:

from section 3, we present our two methods of ensembling Cri1 = [ C%V k i ©6)

the regressors. Experimental results are given in section 4 and k K

section 5 we conclude the text and show the future work. According to the partitioned inverse equationS, we have:

Il. A SHORT INTRODUCTION TOGAUSSIAN PROCESS 1 |: M m

. . . . = M =Cy' + tmm7,
Firstly, we define some notations. Here we only introduce N+l m” 5 N
the basic Gaussian process for regression problems, following — y = (,‘{, — chgflk)_ ,m = _uc;[lk.
the methods introduced by MacKay[10]. Since Gaussian pro- . . . o
cess is very similar to Bayesian neural networks, we follow S.O the inference 0}‘ a new target is a conditional distribution
hich is also Gaussian:

the notation of them. We denote the training set of N dat¥
points asX y 2 {X(n)}i\;p their target set isy = {ta N,
In neural networks, we have a non-linear functigix), with
respect to the parameter.
In parameter approach to regression such as RBF nelVaere:
networks, we use H fixed basis functions. Let us assume that 7 —KTClty 2
. . . o . N+1 N N i
a list of N input pointsX,y has been specified and define N
the NxH matrix R to be the matrix of values of the basis Thus we get the predictive mean value and the variance
functions at the pointsR.,;, = ¢, (x(™). And then define the which define the error bars at the new given point. Due to the
vectory y to be the vector of values af(x) at the N points: characteristic of estimation of mean and variance, we develop
yn = > Rypwy. If the prior distribution ofw is Gaussian two ensemble methods to boost the Gaussian process to get
more efficient regressors. One is a AdaBoost-like algorithm,

h
. ) B 9 . .
with Z€ro me‘?‘”P<W> - N.(O’UWI)Z theny,'bemg a linear the other is a bias/variance decomposition based method.
function ofw, is also Gaussion distributed with zero mean.The

covariance matrix is: IIl. ENSEMBLES OFGAUSSIAN PROCESSES

Q= <y’yT> - <Rw,wTRT> Zemel anq Pitassi_[16], in their paper, present a gradient
R <W wT> R” — 2RRT 1) based Boosting algorithm for regression problems. The method
’ w is different from AdaBoost.R which is proposed by Freund
So the prior distribution of is: and Schapire[4][5], which is not directly used to a regression
5 T problem. And also, it is different with the methods of Duffy
P(y)=N(0,Q) = N(0,0,RR") @ and Helmbold[3] which do not resample the training data
We call y(x) is a Gaussian process if for any fi-through a new distribution at each iteration, but to modify the
nite selection of pointx(!), x(M), ..., x(™ the joint density target value of the training data. They define a new objective
P(y(xM), y(xM), ..., y(xM)))is Gaussian. function:
For regression problems, we assume the target and the 1 X /r T
. . . . . . . _1 i
corresponding estimation function differ by a Gaussian noise Jr = — Z (H Bt 2) exp iz Bt (ti — yt(x(z)))
of variances?: t = y + v, P(v) = N(0,02), then the prior "im1 i t=1

)

1
Pty |tN):§eXp 502

EN41

(v — 5N+1)2i ®)

=r—kK'C'k 9)

2

distribution of target vector is also Gaussian: . : . L 10)
This is the cost aftefl’ iterations to minimize the over all
P(t) = N(0,Q + 02I) = N(0,C) (3) exponentiated squared error and can be viewed as minimizing

We denote the covariance mateX by: the T' hypothesis’ error over distribution of the training data:

5 T 9 1 N T—1 T—1 9
1 .
C = UwRR + UvI (4) JT = E Z (i Bt_Qi exp iz ﬁt (tz - yt(X(Z))> i
When the neuron’s number of the RBF neural networks in- =1 \Le=l =1 ,
creases to infinite, it is proved[10] that the entry of covariance QT*% exp iﬂT (ti _ yT(X(i))> D
matrix C has the form:

D
1 x;—x))?
C(x,x) = 61 exp i—Q > (T72>

i=1

N
+ 6 (5) => wi Br=% exp [ﬁT (tz— —yr (x(”))gi (11)
=1




They compare the objective with a probabilistic expressionan not decompose the functiol to a function ofy;...y;_1
They point that the objective function can be viewed as and a function ofy;, we need some approximation.
product of the reciprocal likelihood at each iteration, while zZemel and Pitassi’s method has an intuitional meaning that
the likelihood function is: the weight is proportional to the reciprocal likelihood: when
) 1 1 10\ 2 at the formert — 1 iterations the likelihood’s product is small
9 /x®, M) = (2m6,) ~* exp [‘ﬁT (#1 = ™) l son result & i ' '
2 at a given training point, meaning that the uncertainty of the
(12) regression result is large, so the weight of the point is large
This can be theoretically interpreted, but in practice, we fingdhich makes more points are re-sampled in the next iteration.
that after many iterations, their method will seriously medtig.1 shows that the variance is a function of the training data’s
a over-fitting problem if without a stop criterion. To avoiddensity, the error bars increase where the data point density
of this, we present two novel methods that can stably boafécreases. We simply modify the update rule of the weights
GPs and without any over-fitting problems. We first present am get some interesting results. At iterationwe assume the
AdaBoost-like algorithm which modifies the objective functionveight is proportional to a function of the average predicting
of Zemel and Pitassi’'s and develop a new method of updatingriance which is estimated using the former 1 iterations:
the weight. Further more, we use a new method to combine

regressors using the bias/variance based composition algorithm (@) C*% ) s %) 18
while maintain our objective function unchanged. wy o COf 1 (x) exp(—Cy—1(x™)) (18)
A. An AdaBoost-Like Ensemble When the average variance is varying from 0 to 1, the weight

1) Algorithm: The two crucial elements of boosting algois a monotonously increasing function with the variable. In
rithm are the way in which a new distribution is constructegractice, we find that the average variance varies not so
and the way in which hypotheses are combined to producéiddenly as the likelihood function, and this method will
new output[16]. We assume that the method of ensembling thet cause the accumulation of the weight which will cause

GPs follows the way which Zemel and Pitassi do: the over-fitting problem. According to the constraint of the
@) objective function, our Boosting can get a more stable result.
Q(X(i)) = Ztﬁzt:ytéx) (13) The flow chart of the algorithm is shown in Table I.
t Mt

wherex(?) is the point which we want to know the target value,
1y, is the hypotheses which a GP outputs at each iteration, and

B¢ is the combination coefficient of each GP. 4/ A
Since at each iteration the GP estimates the value of SN} ﬁ\, A }' LW
a given point is Gaussian, we can rewrite the Gaussian .. N ‘«&‘* \ o

formulation as:

t; — yt(x(i)) ~ N(0, Ot(x(i))) (14) (a) training data (b) regression result

wheret; is the target value of a given point”. Thus the Fig. 1. A simple function regression result. Left: the training data and the
difference between target and the hypotheses of the combitree function; Right: the GP regression result(include mean and variance).

regressor is also Gaussian:

. Zt Brys (X(l))

@)y —
ti—y(x\") =t S 5

TABLE |
ADABOOSTLIKE ENSEMBLE ALGORITHM

> Bt =y (x)) > BiCi(x™)
= ~ N(0, =202 )y (15)
2B 24 B 1.Input;
We use the reciprocal likelihood, the new objective function |  Training set example$x(™), t,,} ..
is: Base learner: Learning a Gaussian process produces a hypothesis.
N _ A 2 2.Choose an initial distribution!" = L.
1 1 ] 1(t; — x(®) 1 n
Jr = — Z 2 (xV) exp [QW (16) 3.Iterate:
n i=1 Cr (X ) a) Learn a Gaussian process to regress a function
Where with distribution UJEZ).
T T b) Set0 < B < 1to minimizeJ;.
S Beye (x@) 3 B Cr(x®) ¢) Update training distribution:
) — _ . — X 1 _ )
yr(xV) = = S B Cr(xY) = =< S, 8 @iy o< OF () exp(-Cux).
. T Q
o o (17) 4 Estimate the outputgy (x(t)) = Zt=AL )

The minimizing of this function (16) is equal to maximizing
the likelihood function of the combined regressor. Since we



2) An EM View: According to our method, we can rewriteensemble method to obtain the average:

the objective function as: _ , 1
Cr(xW) = —————
. 5, 1/Cu(x)
Lo~ {1 o () 2} L p(x0)
= *ZWT exp |5 (ti — g7 (x™") (19) _ DN _ Aol ye(x')
n 2 ( ) gr(x'") = Cp(x ; Cox) (23)
( ) is not same the weight we mention before, but a functlo-H1en the decomposition ylelds:
of predictive variance, we rewrite formula (18) as: 5 (g (xD) — ;)2 N llog o (x)
Ct (X( )) 2
(5 (1) — (i
) o 0% (xD) exp(~C(x1)) (20) _ [@ED) - t)? s O(x)
A C(x) g BT
where C' is the predictive variance at each iteration. Then (ge(xD) — g(xD)2 1 Cy(x)
the new objective function can be viewed as an exponential + E [ Ye c g) + §log Cf @ } (24)
squared error over a certain distributibnHence, we can infer 1 (xt) (xt%))
some interesting results from the squared error: The first term between brackets on the righthand side is the
error of the average model, the second term measures the
(t; — gr(xD))? variance of the different estimators. And also the first term of
T_1 B @) @) the righthand is a logarithmic form of our objective function.
_ (Zt:l Be(ti — yT}l (i‘ ) + Br(t —yr(x™)) )2 We rewrite the formula (24) in the exponential form as:
o (5 Bt = 7 (x0)? 4 (1 — yr(x))? Z Crbcexy l2éT(x<i))
B (S B+ Br)? o N o O 1
21 —y(x ()
g { [ il T OxO ) ilogCt(X )
We then use a EM view to examine the objective function ( ) B (X( ))) 1 C (x(i))
(19). At E-step, we estimate latent variables: the mean value — { y(x y + = log — @ ]}
gr—_1 and the average predictive varian€e_; (x(*)), and then Ci(x) 27Ok

use a functions\” o C'% (x()) exp(—C(x(?)) to generate a (Jensen s inequality)

distribution to re-sample the data set. At M-step, we want (t: —ye(x))2 1 @)

to find a new regressqgjr that have minimum squared error = ZE { { W 3 log Oy (x"* )}
with a optimal parametes. The parametesr is to make the _ .

objective function (16) minimized, that is to make the likeli- B {1 (ye(x™) —g(x))* 1 Ct(x(”)]} (25)
hood maximized. According to the right side of the inequality 2 Ci(x() g 8 C(x()

(21), the M-step can be viewed as another objective functigiie find that between the exponential brackets the first term can
which is generated after re-sampling. We can regard it asqgt be used to estimate the new regressor, therefore we simply
optimize the function(t — y(x( ))) under the constraint of use a new regressor to replace the forrfier 1 iterations’.

(tz — yTl(X(z ))2 = 0 where the Lagrange factor is : This instant estimate which replaces the expectation leads to a
new boosting algorithm. We develop a new objective function
<T—1 2 as:
> ﬁt) I (ti—yr (<))’
— i 1 (ti—yr(x ))
7“} (22) Jnew & 1 (CT% (! ))) eXp {2cT<x<>>}
T L (x() x (1) Cy (x(D)
n = exp { 1 (ye( Cf)(xa()) )? %log é((xm))}

B. Bias/Variance Decomposition Based Boosting

N . 2
. . . NS ti — (@)
In the previous sub-section we give an ensemble methed ZW(TZ) (CTé (x(”)> exp {1(%(2)))} (26)
which is similar to Zemel and Pitassi’s. But we do not use =1 2 Cr(x™)

a decomposition form of the weight and the new regress@ghere

with the objective function (16). Instead, we use an ad 1
hoc technique that intuitionally uses a function of variance “r 1 (GO g2 | 1) Culx))
to update the weights. Heskes[7] in his paper proves an eXp{ Ce(x)) a8 C(x“))}

. . S : ; _ . _1 . )
interesting conclusion: t_he mean squared error is a speual T-1 Cy(x®)\ 2 1 (5o (xD) — g (x))?
case of the Kullback-Leibler divergence of his bias/variance =~ — exp |—= s

e : — \ O(x() 2 Cy(x™)
decomposition model. If a regressor can estimate the mean t=1
value and the variance of the given point, we can use a new @7)



Note that we express the objective function as a decom-7) Boston Housing: This dataset contains information col-

position form which has a weighib(Ti) and a new reciprocal

lected by the U.S Census Service concerning housing

likelihood. The weight is approximate to the likelihood of each in the area of Boston Mass. It comprises 506 examples
regressor to their average. This indicates that the weight is with 14 variables and the results are given for the task
large at the stable points of the regressors. The flow chart of of predicting the median house value from the other 13

this algorithm is shown in Table II.

TABLE I
BIAS/VARIANCE DECOMPOSITION BASEDBOOSTING

1.Input:

Training set example$x(”),tn}f:1

2.Choose an initial distributiowli) = %
3.lterate:

a) Learn a Gaussian process to regress a function
with distributionw!”.

b) Update training distribution:

1
) b o)\ T2 1y ) =g, (x(D))?
Wy i X = < Cz(xu)) €Xp 757017(;)) :

=1

4 Estimate the output :
o ())y= 1

Or) = sare ey

i (x(D)) = Con(x() L ye(x)
gr(x") = Cr(x )tzlm-

IV. MAIN RESULTS

In this section we show some results to see how t
methods above perform. We also implement two metho
which are given by Duffy and Helmbold in [3]: SquareLevH
and ExpLev, and also Zemel and Pitassi’ algorithm[16] naming? = 0-6z1 + 0.3z> 0039 | 0.0682 | 0.0609 | 0.0193 | 0.0125
nips-boosting. We use a MSE(mean squared error) to b

criterion function. In fig.2 theln(MSE) is adopted to be

the output of each iteration. We test our algorithm using tt

following functions and data sets:
1) Sinc functiont = sin(z)/x + ¢:
x € U[-10,10],& ~ N(0,0.1).
2) t = sin(z) +0.0122 + €
x € U[-10,10],& ~ N(0,0.1).
3) A Planet = 0.6z1 + 0.3z5 + &:
x € U[-1,1],e ~ N(0,0.5).
4) Friedmanl:
t = 10sin(rz122) + 20(23 — 0.5)% + 1024 + 525 + €.
X1~ Ty € U[O, ].], e N(0,0Q)
5) Friedman2:

212
t = {x% + (x2x3 — 111“) ] +e.

6) Friedmana3: .
t=tan~! =T e
For both 5 and 6x; € U[0, 100]
x9 € U[40m, 5607]
x3 € U[O, 1]
T4 € U[l, 11],
e~ N(0,0.2).

Base learner: Learning a Gaussian process produces a hypothesis.

variables. We normalize the target value within the range
from -1 to 1.

8) Abalone: This data set comes from the UCI repository
of machine learning databases. The task is to predict the
age (number of rings) of abalone from physical measure-
ments. We treat the output as a continuous variable, even
though it is a positive integer with a maximum value of
29. The input variables is 8 dimension vectors, the target
is the normalized value of a fish’'s age. There are totally
4177 examples in the data set.

For function 5, 6 and data set 8, we simply normalize the
input vectors to the range from -1 to 1, while for data set 7,
being too many variables of 0, is performed PCA to reduce
to 5 dimensions. For function 1 to 6, we select 100 random
samples for training and 500 random samples for testing. For
data set 7, we randomly select 100 samples for training and
the rest for testing. For data set 8, we randomly select 300
samples for training and 2000 samples for testing.

TABLE Il
MSE RESULT OF8 DATASETS

ne SquareLevR| ExpLev | Nips Ourl | Our2
ds ¢ =sin(z)/x 0.0025 0.0024 | 0.0025 | 0.0021 | 0.0024
® t = sin(x) + 0.01z> 0.0026 0.0030 | 0.0032 | 0.0018 | 0.0019

y o Friedmanl 0.0851 0.0692 | 0.0340 | 0.0209 | 0.0188
Friedman2 0.1094 0.0660 | 0.0239 | 0.0186 | 0.0181

| Friedman3 0.0940 0.0688 | 0.0705 | 0.0522 | 0.0464
'~ Boston Housing 0.2203 0.2096 | 0.1768 | 0.1238 | 0.1139
Abalone 0.0345 0.0378 | 0.0357 | 0.0251 | 0.0250

Table 11l shows the main results of 8 functions and data
sets, each row has 5 algorithms implementation playing on
the signed data set as column 1 shows. The best MSE value is
highlighted with a bold font. Fig.2 shows the 500 iterations of
each algorithm played on each data set. Note that for simple
functions, SquareLevR and ExpLev will converge to some
fixed value which may be not the best. For complex functions
and real data sets, these two algorithms will diverge to some
unexpectable value. This is an over-fitting problem because
these algorithm will modify the target which is relative to
the residual of the hypotheses value at each iteration, then
use an additive model to represent the final result, so the
learner will learn until the residual is 0. Nips-boosting rapidly
descends with in 10 or 20 steps, but it will also over-fit after
20 or 30 iterations. The reason is that, after several steps of
iterations, the weight will accumulate at some certain samples.
The product of the reciprocal likelihood is very large at some
samples and will not diminish any more.



And for a majority of the results, this method is better to the
AdaBoost-like ensemble method.

V. CONCLUSIONS

In this paper, we first give an AdaBoost-like algorithm
which modifies the objective function of Zemel and Pitassi's
and develop a new method of updating the weight. Secondly,
we adopt a new method to combine regressors using the
bias/variance based composition algorithm while maintain our
objective function unchanged. Experimental results indicate
that our methods are comparable with others on descend
speed and will not exhibit any over-fitting problems. But our
methods also have some problems. Firstly, we use some ad hoc
techniques to update the weights of the training samples, espe-
cially in bias/variance decomposition based Boosting method,
. it has no interpretation in theory; Secondly, we only show the
(©) t = 0.621 + 0.325 (d) Friedmant algorithms and the experimental results while do not give any

proof of convergence. In the future work, we will prove our
S algorithm in theory.

5 BooSIingGP

Log MSE

Log MSE

SquareLevR
- Explev

5 BoosIingGP i
our BoostingGP1 our BoostingGP1,

Boosting of regressors is not received as much attention as
‘ the classification problems, we give two Boosting methods and
obtain some interesting results. We expect that the boosting
methods of regression will be paid more attention in the future.

Log MSE
Log MSE
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