Boosting

Tong Zhang

Rutgers University
Boosting

- Ensemble Learning algorithm.
- Given a learning algorithm \mathcal{A}:
 - how to generate the ensemble candidates?
 - how to combine the generated ensemble candidates?

Invoke \mathcal{A} with multiple samples (similar to Bagging).

Goal: to find optimal ensemble by minimizing a loss function.

Learning method:
- greedy, stage-wise optimization
- invoking a base-learner (weak learner)
- adaptive resampling

Bias reduction:
- less stable but more expressive.
- better than any single classifier.
Boosting

- Ensemble Learning algorithm.

- Given a learning algorithm \mathcal{A}:
 - how to generate the ensemble candidates?
 - how to combine the generated ensemble candidates?

- Invoke \mathcal{A} with multiple samples (similar to Bagging).
 - goal: to find optimal ensemble by minimizing a loss function
 - learning method:
 - greedy, stage-wise optimization
 - invoking a base-learner (weak learner) \mathcal{A}.
 - adaptive resampling

- Bias reduction:
 - less stable but more expressive.
 - better than any single classifier.
Why Boosted Trees

- May build shallow trees
 - combine shallow trees (weak learner) to get strong learner.

- Linear model of high order features
 - automatically find high order interactive features \(h_j(\cdot) \)

\[
h(x) = \sum_j w_j h_j(x)
\]

- automatically handle heterogeneous features
- high order features are indicator functions.

- Alternatives:
 - discretize each feature into (possibly overlapping) buckets
 - direct construction of feature combination.
 - nonlinear functions like kernels or neural networks.
 - direct greedy learning.
Weak Learning and Adaptive Resampling

- A: a weak learner (e.g. shallow tree)
 - better than chance (0.5 error) on any (rewighted) training data.

Question: can we combine weak learners to obtain a strong learner?

Answer: yes, through adaptive resampling (boosting).
 - idea: overweighting difficult examples that are hard to classify.

Compare with bagging: sampling without overweighting errors.
Compare with outlier removal: underweighting errors.
 - reduce variance (but may increase bias)
The Idea of Adaptive Resampling

- Reweight the training data to overweight difficult examples.
- Using weak learner \mathcal{A} to obtain classifiers f_j on reweighted samples.
- Adding the new classifier into ensemble, and choose weight w_j.
- Iterate.
- Final classifier is $\sum_j w_j f_j$.
How to reweight, and how to compute w.

Assume binary classification $y \in \{\pm 1\}$, and $f \in \{\pm 1\}$.

initialize sample weights $\{d_i\} = \{1/n\}$ for $\{(X_i, Y_i)\}$

for $j = 1, \ldots, J$

- call Weak Learner to obtain f_j using sample weighted by $\{d_i\}$
- let $r_j = \sum_i d_i f_j(X_i) Y_i$
- let $w_j = 0.5 \ln((1 + r_j)/(1 - r_j))$
- update d_i: $d_i \propto d_i e^{-w_j f_j(X_i) Y_i}$.
- let $\bar{f}_J(x) = \sum_{j=1}^J w_j f_j(x)$

AdaBoost (Adaptive boosting)
Some Theoretical Results about AdaBoost

- **Convergence:** reduces margin error
 - \(f \) correctly classifies \(X_i \) with **margin** \(\gamma \) if \(f(X_i)Y_i > \gamma > 0 \).
 - If each weak learner \(f_j \) does better than \(0.5 - \delta_j \) \((\delta_j > 0) \) on reweighted samples with respect to classification error \(I(f(X_i)Y_i \leq 0) \), then

\[
\frac{1}{n} \sum_{i=1}^{n} I(\bar{f}_j(X_i)Y_i \leq \gamma) \leq \exp(\gamma - 2 \sum_{j=1}^{J} \delta_j^2).
\]

- **Generalization:**
 - smaller margin error implies good generalization performance
 - For linear separable problems, Adaboost does not usually maximize margin: different from SVM
Generalization Analysis for Boosting

- Generalization performance of $\hat{f} = \mathcal{A}(S_n)$: with probability at least $1 - \eta$,
 \[
 \text{test error} \leq \text{training error} + \text{model complexity}.
 \]

- Decision tree of fixed depth: \mathcal{H} has finite VC-dimension d_{VC},
 \[
 (\phi(f, y) = I(fy \leq 0)):
 \]
 \[
 \text{test error} \leq \text{training error} + C \sqrt{\frac{1}{n}(d_{VC} - \ln(\eta))}.
 \]
 \[
 \text{test error} \leq 2 \times \text{training error} + \frac{C}{n}(d_{VC} - \ln(\eta)).
 \]

- Traditional analysis without considering margin
Generalization Error using Number of Steps

- \mathcal{H}: VC-dimension d_{VC}.
- Ensemble $\bar{f}_J = \sum_{i=1}^{J} w_i f_i(x) : f_i \in \mathcal{H}$:

$$R(\bar{f}_J) \leq 2 \hat{R}(\bar{f}_J) + \frac{C}{n} (Jd_{VC} - \ln(\eta)),$$

where $R(\bar{f}_J)$ is the test error, $\hat{R}(\bar{f}_J)$ is the training error, and the complexity is linear in J.

- \bar{f}_J: boosted tree after J round:
 - training error: $O(e^{-2J\delta^2})$ (0.5 − δ error reduction)
 - generalization error

$$R(\bar{f}_J) \leq O(e^{-J\gamma}) + \frac{C}{n} (Jd_{VC} - \ln(\eta)).$$
Generalization Error Anomaly

Empirical observations:
- AdaBoost is difficult to overfit.
- even when training error becomes zero, generalization error still decays
- Not explained by the generalization bound using the number of steps.
- require additional analysis: margin
Margin Bound

- Decision tree of fixed depth: \mathcal{H} has finite VC-dimension d_{VC}, then
 training error $\leq 2 \times$ margin error + fixed complexity

$$E_{X,Y} I(\tilde{f}_J(X)Y \leq 0) \leq \frac{2}{n} \sum_{i=1}^{n} I(\hat{f}_m(X_i)Y_i \leq \gamma \|w\|_1) + \frac{C}{n} \left(\frac{d_{VC}}{\gamma^2} - \ln(\eta) \right).$$

- Explains why AdaBoost can keep improving even when classification error becomes zero
 - reason: margin error decreases
Margin analysis is a special case of general L_1 regularization

Let ϕ be a smooth loss.

Given L_1 constraint $\sum_j w_j \leq A$:

$$E_{X,Y} \phi(\bar{f}_J(X), Y) \leq \frac{1}{n} \sum_{i=1}^{n} \phi(\bar{f}_J(X_i), Y_i) + C_{\phi} \sqrt{\frac{1}{n}(A^2 d_{VC} - \ln(\eta))}. $$

Complexity measured by A, not number of steps J.
Estimate generalization of boosting: using the following complexity control
- L_1: 1-norm of the weights w_j are bounded.
- L_0: number of boosting steps (sparse representation).

Which complexity control is better?
- Sparsity is more fundamental but both views are useful.
- Can be more refined analysis in between.

In more general boosting methods:
- Complexity can be controlled either by L_1 (1-norm) or L_0 (sparsity).
Issues corresponding to the Weak Learner View

- Weak learner: this is only an assumption, how to prove existence?
 - what is a weak learner?
 - why boosted tree works, and boosted SVM does not.

- Overfitting: driving error to zero can overfit the data (for non-separable problems)

- AdaBoost does not maximize margin.

- Adaptive resampling: why this specific form.

- Can we generalize adaptive resampling idea to regression and complex loss functions?
From Adaptive Resampling to Greedy Boosting

- Weak learner: picks f_j from a hypothesis space \mathcal{H}_j to minimize certain error criterion.
- Goal: find $w_j \geq 0$ and $f_j \in \mathcal{H}_j$ to minimize loss

\[
\left\{ \hat{w}_j, \hat{f}_j \right\} = \arg \min_{\{w_{j} \geq 0, f_j \in \mathcal{H}_j\}} \sum_{i=1}^{n} \phi \left(\sum_{j} w_j f_j(X_i), Y_i \right). \quad (*)
\]

- Idea: greedy optimization.
 - at stage j: fix (w_k, f_k) ($k < j$), find (w_j, f_j) to minimize the loss $(*)$.
AdaBoost as Greedy Boosting

- Loss \(\phi(f, y) = \exp(-fy) \).
- Goal: using greedy boosting to minimize

\[
[\hat{w}_j, \hat{f}_j] = \arg \min_{\{w_j \geq 0, f_j \in \mathcal{H}_j\}} \sum_{i=1}^{n} e^{-\sum_{j} w_j f_j(X_i) Y_i}.
\]

- Greedy optimization: at stage \(j \), let \(d_i \propto e^{-\sum_{k=1}^{j-1} \hat{w}_k \hat{f}_k(X_i) Y_i} \), and solve

\[
[\hat{w}_j, \hat{f}_j] = \arg \min_{w_j \geq 0, f_j \in \mathcal{H}_j} \sum_{i=1}^{n} d_i e^{-w_j f_j(X_i) Y_i}.
\]

- It can be shown solution is exactly the Adaboost update.
General Loss Function

- Learn prediction function $h(x)$.
- By solving learning formulation

$$\hat{h} = \arg\min_{h \in H} \mathcal{L}(h)$$

- $\mathcal{L}(h)$: complex loss function of the form

$$\mathcal{L}(h) = \frac{1}{n} \sum_{i=1}^{n} \phi_i(h(x_{i,1}), \ldots, h(x_{i,m_i}), y_i)$$

- Greedy algorithm: generalization of Adaboost
 - $(s_k, g_k) = \arg\min_{g \in C, s \in R} \mathcal{L}(h_k + sg)$
 - $h_{k+1} \leftarrow h_k + \tilde{s}_k g_k$ (\tilde{s}_k may not equal s_k)
Learn prediction function $h(x)$. By solving learning formulation

$$\hat{h} = \arg \min_{h \in H} \mathcal{L}(h)$$

$\mathcal{L}(h)$: complex loss function of the form

$$\mathcal{L}(h) = \frac{1}{n} \sum_{i=1}^{n} \phi_i(h(x_{i,1}), \ldots, h(x_{i,m}), y_i)$$

Greedy algorithm: generalization of Adaboost

$$(s_k, g_k) = \arg \min_{g \in C, s \in R} \mathcal{L}(h_k + sg)$$

$h_{k+1} \leftarrow h_k + \tilde{s}_k g_k$ (\tilde{s}_k may not equal s_k)

However, this greedy weak learner is specialized and hard to implement; can we simplify?
Boosting with Regression base Learner

- Simplified weak learner: **nonlinear regression base learner** \mathcal{A}.
 - input: $X = [x_1, \ldots, x_k]$, residues $R = [r_1, \ldots, r_k]$
 - output: a nonlinear function $\hat{g} = \mathcal{A}(X, R) \in \mathcal{C}$ (e.g. decision tree)

\[
\sum_{j=1}^{k} (\hat{g}(x_j) - r_j)^2 \approx \min_{g \in \mathcal{C}} \sum_{j=1}^{k} (g(x_j) - r_j)^2.
\]
Simplified weak learner: nonlinear regression base learner \(A \).

- input: \(X = [x_1, \ldots, x_k] \), residues \(R = [r_1, \ldots, r_k] \)
- output: a nonlinear function \(\hat{g} = A(X, R) \in \mathcal{C} \) (e.g. decision tree)

\[
\sum_{j=1}^{k} (\hat{g}(x_j) - r_j)^2 \approx \min_{g \in \mathcal{C}} \sum_{j=1}^{k} (g(x_j) - r_j)^2.
\]

Question: can we use \(A \) to optimize complex loss functions \(\mathcal{L}(\cdot) \)?

Answer: yes:
- functional gradient boosting (Friedman 01)
- based on a functional generalization of gradient descent
- a generalization of Adaboost
Gradient Boosting Algorithm

1: \(h_0(x) = 0 \)
2: \textbf{for} \(t = 1 \) to \(T \) \textbf{do}
3: \(r_t = \frac{\partial \mathcal{L}(h, Y)}{\partial h} \big|_{h=h_{t-1}(x)} \)
4: \(g_t = \mathcal{A}(X, r_t) \)
 \hspace{1cm} // (i.e. call base learner) \(g_t \approx \arg\min_{g \in \mathcal{C}} \|g(X) - r_t\|_2^2 \)
5: \(\beta_t = \arg\min_{\beta} \mathcal{L}(h_{t-1}(X) + \beta \cdot g_t(X), Y) \)
6: \(h_t(x) = h_{t-1}(x) + s_t \cdot \beta_t g_t(x) \)
7: \textbf{end for}
8: Return \(h_T(x) \)

- \(s_t = s \): shrinkage parameter — convergence requires \(s \approx 0 \)
- functional generalization of gradient descent
 \(h_t \leftarrow h_{t-1} - s_t \frac{\partial \mathcal{L}(h_t)}{\partial h_t} \)
Why Boosted Trees

- Linear model of high order features
- Automatically handle heterogeneous features
 - create new (high order) features that are indicator functions.
- Automatically find high order interactive features
 - through tree splitting procedure.
 - a method to solve the problem of huge search space.
 - assume good high order features depend on actively maintained set of (good) features constructed so far.

Alternatives:
- discretize each feature into (possibly overlapping) buckets
- direct construction of feature combination.
- nonlinear functions like kernels or neural networks.
- nonlinear feature learning using coding
- general greedy feature learning by maintaining a set of features and adding new ones.