Overview of Learning Theory

Tong Zhang

Rutgers University
Data \((X, Y)\) are randomly drawn from an underlying distribution \(D\).

Binary classification: \(Y \in \{\pm 1\}\)

Assume training data are iid samples from \(D\):

\[
S_n = \{(X_1, Y_1), \ldots, (X_n, Y_n)\}
\]

Want to construct prediction function \(f\) from training data to minimize future loss over \(D\)

\[
E_{(X,Y) \sim D} l(f(X) \neq Y)
\]
Learning Algorithm

- Learning algorithm A
 - learn prediction rule $\hat{f} = A(S_n)$ from training data $S_n = \{(X_i, Y_i)\}_{i=1,...,n}$.
- Training error

$$\text{TRAINING ERROR}(f) = \frac{1}{n} \sum_{i=1}^{n} I(\hat{f}(X_i) \neq Y_i)$$

- Evaluate performance of a learning algorithm on test data.

$$\text{TEST ERROR}(f) = E_{(X,Y) \sim D} I(f(X_i) \neq Y_i)$$
How good is a learning algorithm and how to theoretically justify it?
Generalization Analysis

- How good is a learning algorithm and how to theoretically justify it?
- Given a learning algorithm, we want to know
 - how good is the learning algorithm compared to the best possible prediction rule in a class?
 - oracle inequality
Generalization Analysis

- How good is a learning algorithm and how to theoretically justify it?
 - Given a learning algorithm, we want to know
 - how good is the learning algorithm compared to the best possible prediction rule in a class?
 - oracle inequality
 - How to estimate test error from training error
 - we observe training error.
 - we want to minimize test error.
 - the goal is to estimate the difference of test error and training error
Generalization Analysis

- How good is a learning algorithm and how to theoretically justify it?
- Given a learning algorithm, we want to know
 - how good is the learning algorithm compared to the best possible prediction rule in a class?
 - oracle inequality
- How to estimate test error from training error
 - we observe training error.
 - we want to minimize test error.
 - the goal is to estimate the difference of test error and training error
- Other properties of learning algorithm
- Key concept: uniform convergence
 - we will discuss technical tools to prove uniform convergence
Linear classification rule: weight vector $w \in \mathbb{R}^d$ and predict label as

$$f(x) = \text{sgn}(w^T x)$$

Classification error

$$I(f(x) \neq y) = I(f(x)y \leq 0) = I(w^T xy \leq 0).$$

Training error:

$$\text{TRAINING ERROR}(w) = n^{-1} \sum_{i=1}^{n} I(w^T X_i Y_i \leq 0).$$

Test error:

$$\text{TEST ERROR}(w) = \mathbb{E}_{(X, Y)} I(w^T XY \leq 0).$$
Example: Linear Classification II

- Learning algorithm: minimize training error
 \[\hat{w} = \arg\min_w \sum_{i=1}^{n} I(w^T X_i Y_i \leq 0). \]

- What we are interested in: test error
- Our question: how good is this algorithm?
We observe the training error of \hat{w}, how to estimate its test error?

Statement: with probability $1 - \eta$ over randomly drawn training data, we have

\[
\text{TEST ERROR}(\hat{w}) \leq \text{TRAINING ERROR}(\hat{w}) + C \sqrt{\frac{d + \ln(1/\eta)}{n}},
\]

where C is a constant.

Why probability: due to the randomness of training data, there are chance that the trained classifier may not be good.

It may not be representative of test data.
We observe the training error of \hat{w}, how to estimate its test error?

Statement: with probability $1 - \eta$ over randomly drawn training data, we have

$$
\text{TEST ERROR}(\hat{w}) \leq \text{TRAINING ERROR}(\hat{w}) + C \sqrt{d + \ln(1/\eta)}/n,
$$

where C is a constant.

why probability: due to the randomness of training data, there are chance that the trained classifier may not be good

it may not be representative of test data.

Proof is via uniform convergence.
Uniform Convergence Statement:
- with probability $1 - \eta$ over training data, we have for all classifiers \tilde{w} that may depend on training data

$$|\text{TEST ERROR}(\tilde{w}) - \text{TRAINING ERROR}(\tilde{w})| \leq C\sqrt{(d + \ln(1/\eta))/n},$$

Implication of Uniform Convergence:
since it applies to all training data dependent \tilde{w}, we may take $\tilde{w} = \hat{w}$ and estimate test error of \hat{w} as

$$\text{TEST ERROR}(\hat{w}) \leq \text{TRAINING ERROR}(\hat{w}) + C\sqrt{d\ln(1/\eta)/n}.$$
How Good is Error Minimization Learner?

- How good is \(\hat{w} \) compared to best linear classifier \(w^* \), defined as

\[
 w^* = \arg \min_w \text{TEST ERROR}(w).
\]

- Statement: with probability \(1 - \eta \) over randomly drawn training data, we have

\[
 \text{TEST ERROR}(\hat{w}) \leq \text{TEST ERROR}(w^*) + 2C \sqrt{\left(d + \ln(1/\eta) \right)}/n.
\]
Proof based on Uniform Convergence

\[
\text{TRAINING ERROR}(\hat{w}) \leq \text{TRAINING ERROR}(w^*)
\]

From uniform convergence, we know

\[
\text{TEST ERROR}(\hat{w}) \leq \text{TRAINING ERROR}(\hat{w}) + C\sqrt{(d + \ln(1/\eta))/n}
\]

and

\[
\text{TRAINING ERROR}(w^*) \leq \text{TEST ERROR}(w^*) + C\sqrt{(d + \ln(1/\eta))/n}
\]

Add the above inequalities we obtain the desired bound.
Some Common Techniques for Uniform Convergence

- Exponential Probability Inequality (Chernoff Bound)
- VC dimension
- Covering numbers
- Rademacher Complexity
Exponential Inequality (Chernoff Bound)

- Let $X \in [0, 1]$ be a random variable, with mean μ.
- Let X_1, \ldots, X_n are iid samples from the same distribution, and let

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$$

be the empirical mean.
- We want to know: how good is \bar{X}_n as an estimator of μ?
- Exponential tail inequality: $|\bar{X}_n - \mu| > \epsilon$ is exponentially small.
Exponential Inequality (Chernoff Bound)

- Let $X \in [0, 1]$ be a random variable, with mean μ.
- Let X_1, \ldots, X_n are iid samples from the same distribution, and let
 \[\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i \]
 be the empirical mean.
- We want to know: how good is \bar{X}_n as an estimator of μ?
- Exponential tail inequality: $|\bar{X}_n - \mu| > \epsilon$ is exponentially small.
- Chernoff bound (Hoeffding’s inequality):
 \[P(|\bar{X}_n - \mu| \geq \epsilon) \leq 2e^{-2n\epsilon^2}. \]
 Alternatively, we have with probability $1 - \eta$:
 \[|\bar{X}_n - \mu| \leq \sqrt{\ln(2/\eta) / 2n} \]
 by setting $\eta = 2e^{-2n\epsilon^2}$ which implies $\epsilon = \sqrt{\ln(2/\eta) / 2n}$.
Test versus training errors for single classifier:
- $X \in \{0, 1\}$: classification error of a single classifier f
- Use Chernoff bound to estimate test performance from training error:

$$|\hat{X}_n - \mu| \leq \sqrt{\ln(2/\eta)/2n}.$$

Test versus training error for M classifiers f_1, \ldots, f_M
- Training error $\text{TRAINING ERROR}(f_j)$
- Test error $\text{TEST ERROR}(f_j)$
- Uniform convergence statement: with probability $1 - \eta$, for all j

$$|\text{TRAINING ERROR}(f_j) - \text{TEST ERROR}(f_j)| \leq \sqrt{\ln(2M/\eta)/2n}.$$
Proof via Union Bound

- For each j, the probability of the following fails

$$|\text{TRAINING ERROR}(f_j) - \text{TEST ERROR}(f_j)| \leq \sqrt{\frac{\ln(2M/\eta)}{2n}}.$$

is no more than η/M.

- The probability the above inequality fails for at least one j is no more than $M \times (\eta/M) = \eta$.

Consequence: this means that the following inequality holds for all j with probability at least $1 - \eta$:

$$|\text{TRAINING ERROR}(f_j) - \text{TEST ERROR}(f_j)| \leq \sqrt{\frac{\ln(2M/\eta)}{2n}}.$$

or equivalently with probability $1 - \eta$:

$$\sup_j |\text{TRAINING ERROR}(f_j) - \text{TEST ERROR}(f_j)| \leq \sqrt{\frac{\ln(2M/\eta)}{2n}}.$$
Consequences: measure overfitting

Testing M classifiers on training and pick the best

$$\hat{j} = \arg \min_j \text{TRAINING ERROR}(f_j).$$

Uniform convergence: with probability $1 - \eta$,

$$\sup_j |\text{TRAINING ERROR}(f_j) - \text{TEST ERROR}(f_j)| \leq \sqrt{\ln(2M/\eta)/2n}.$$

Estimating test error from training error:

$$\text{TEST ERROR}(f_{\hat{j}}) \leq \text{TRAINING ERROR}(f_{\hat{j}}) + \sqrt{\ln(2M/\eta)/2n}.$$

- degree of overfitting: $\sqrt{\ln(2M/\eta)/2n}$.
- when n is large, overfitting is small when $\ln M/n = o(1)$.
- rule of thumb: one can tolerate exponential in n many models.
Empirical process is an abstraction of estimating test error from training errors for multiple classifiers.

Problem set up:
- observations training data \(S_n \)
- classifier: \(f_\theta(x) \), parameterized by \(\theta \in \Theta \)
- \(\hat{\theta} \): estimated from training data, what is its test error?
- Uniform convergence:

\[
\sup_{\theta \in \Theta} \left| \text{TRAINING ERROR}(f_\theta) - \text{TEST ERROR}(f_\theta) \right|.
\]

If \(\Theta \) is finite, we know how to obtain uniform convergence bound from Chernoff bound.
Empirical Processes

- Empirical process is an abstraction of estimating test error from training errors for multiple classifiers

Problem set up

- observations training data S_n
- classifier: $f_\theta(x)$, parameterized by $\theta \in \Theta$
- $\hat{\theta}$: estimated from training data, what is its test error?
- Uniform convergence:
 \[
 \sup_{\theta \in \Theta} \left| \text{TRAINING ERROR}(f_\theta) - \text{TEST ERROR}(f_\theta) \right|
 \]

- If Θ is finite, we know how to obtain uniform convergence bound from Chernoff bound.

- What if Θ is infinity?
Many versions of covering numbers: we consider one definition

- Given classifiers $f_\theta(x)$ with $\theta \in \Theta$ that takes $\{0, 1\}$ values, we may define its empirical L_∞ covering number. Let $\mathcal{H} = \{f_\theta(x) : \theta \in \Theta\}$, and define

$$L_\infty(\mathcal{H}|S_n) = |\{[I(f_\theta(X_1) \neq Y_1), \ldots, I(f(X_n) \neq Y_n)] : \theta \in \Theta\}|.$$

- empirical covering number is the number of the functions f_θ can attain at finite number of training points.

How to estimate covering number?

- partial answer: VC-dimension $VC(\mathcal{H})$ for binary-valued functions
- there are other methods
Definition (Shattering)

A function class \(\mathcal{H} \) is said to shatter a set of data points
\((X_1, X_2, \ldots, X_n)\) if, for every assignment of labels to those points
\((Y_1, \ldots, Y_n)\), there exists a function \(f \in \mathcal{H} \) such that \(f \) makes no errors
when evaluating that set of data points: \(f(X_i) = Y_i \) for all \(i \).

- any possible labeling can be explained
- complete overfitting

VC dimension \(VC(\mathcal{H}) \): the maximum \(n \) such that there exist data
points of cardinality \(n \) that can be shattered.
Example: linear separator in 2d

- In 2d:
 - data $x \in \mathbb{R}^2$
 - $\mathcal{H} = \{\text{sign}(w^T x + b) : w \in \mathbb{R}^2, b \in \mathbb{R}\}$

- There exists 3 points $[0, 0], [0, 1], [1, 0]$ that can be shattered by \mathcal{H}

- Any four points cannot be shattered:
- So VC dimension is 3
- More general: d dimensional linear classifier has VC dimension $d + 1$
VC dimension and covering number

- Covering number bound: Sauer’s Lemma \(n \geq d \)

\[
N_{\infty}(\mathcal{H} | S_n) \leq \sum_{i=0}^{d} \binom{n}{i} \leq (en/d)^d.
\]

consequence:

- uniform convergence: similar to \(M \) classifiers with \(M = (en/d)^d \)
- can be shown using a technique called symmetrization

Uniform convergence: with probability \(1 - \eta \),

\[
\sup_\theta |\text{TRAINING ERROR}(f_\theta) - \text{TEST ERROR}(f_\theta)| \leq O\left(\sqrt{\frac{d \ln(en/d) + \ln(1/\eta)}{n}}\right) = O\left(\sqrt{\frac{d \ln(en/d) + \ln(1/\eta)}{n}}\right).
\]

more refined analysis can remove \(\ln n \).
Rademacher Complexity

We define Rademacher Complexity of \mathcal{H} as

$$R(\mathcal{H}) = E_{s_n} E_{\sigma} \sup_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_i I(f(X_i) Y_i \leq 0),$$

where $\sigma = \{\sigma_1, \ldots, \sigma_n\}$: each σ_i randomly takes values in $\{\pm 1\}$.

- Covering number bounds imply Rademacher complexity bounds
- There are other ways to bound Rademacher complexity.

Uniform convergence bound:

$$\sup_{f \in \mathcal{H}} |\text{TEST ERROR}(f) - \text{TRAINING ERROR}(f)| \leq 2R(\mathcal{H}) + \sqrt{\frac{\ln(2/\eta)}{2n}}.$$

This is called concentration inequality (McDiarmid Inequality).
Rademacher complexity

\[R(\mathcal{H}|S_n) \leq C \sqrt{\text{VC}(\mathcal{H})/n} \]

Uniform convergence bound:

\[\sup_{f \in \mathcal{H}} |\text{TEST ERROR}(f) - \text{TRAINING ERROR}(f)| \leq 2C \sqrt{\text{VC}(\mathcal{H})/n} + \sqrt{\frac{\ln(2/\eta)}{2n}}. \]
Let $f(x) \in \mathcal{H}$ be a real valued function
e.g. linear function: $f(x) = w^T x$ ($x \in \mathbb{R}^d$)

To bound $E_{X,Y} I(f(X) Y \leq 0)$ in term of $\frac{1}{n} \sum_{i=1}^{n} I(f(X_i) Y_i \leq \gamma)$
$\gamma > 0$ is margin

Want a bound of the form:

$$E_{X,Y} I(\hat{f}(X) Y \leq 0) \leq \frac{1}{n} \sum_{i=1}^{n} I(\hat{f}(X_i) Y_i \leq \gamma) + Q_{\gamma}(\hat{f}).$$

We can estimate $Q(\hat{f})$ using L_1 norm as:

$$Q_{\gamma}(\hat{f}) = \sqrt{\|\hat{w}\|_1^2 \sup_i \|X_i\|_\infty^2} \frac{1}{\gamma^2 n}$$

The quantity depends on margin instead of dimension.
The main goal of learning theory is to understand the effectiveness of learning algorithms.

The main results are oracle inequalities or inequalities relating test error and training error (generalization error bound).

The main techniques are uniform convergence and empirical processes.

The main techniques for uniform convergence are exponential inequality, covering numbers, and Rademacher complexity.

Results are scattered in the literature. Further readings:

- http://www.cs.berkeley.edu/~bartlett/courses/281b-sp08
- http://www.cs.huji.ac.il/~shais/AdvancedML.html