Learning on the Web

Tong Zhang

Rutgers University
Machine Learning Problems on Web

- Classification
- Ranking
- User Behavior Modeling
- Recommendation
- Community Analysis
- Quality Assessment
- Exploration Exploitation
- Scalability
- ...
Classification
Ranking
User Behavior Modeling
Recommendation
Community Analysis
Quality Assessment
Exploration Exploitation
Scalability
...
Classification

- **Electronic Spam**
 - email spam: unwanted email
 - webpage spam: low-quality pages to be placed high
 - blog spam: random blog pages to promote other pages
 - click spam: misleading clicks of ads or webpages
 - text messaging spam: unwanted text messages
 - usually aim for commercial gains

- **Sentiment analysis**

- **Webpage classification**

- **Query classification**

- ...
Classification

- Electronic Spam
 - email spam: unwanted email
 - webpage spam: low-quality pages to be placed high
 - blog spam: random blog pages to promote other pages
 - click spam: misleading clicks of ads or webpages
 - text messaging spam: unwanted text messages
 - usually aim for commercial gains

- Sentiment analysis

- Webpage classification

- Query classification

- ...

Key issues:
- problem formulation; feature generation; information aggregation; model adaptation
From: 丘先生 <xlma@zjip.com>
Subject: 出售：报销，做帐，票据
Date: July 25, 2012 9:43:08 PM GMT+08:00
Reply-To: <30910@sohu.com>

出售,报销，做帐，票据

餐饮，住宿，咨询，服务，培训，运输，建筑，租赁，广告，商品销售，设计，.......做帐报销;票据。
请加QQ：2297845601 ， 请电丘先生：13715362114
（可加宏）内容（可加宏）
Two ipad reviews: do they like or dislike the product?

<table>
<thead>
<tr>
<th>Review 1</th>
<th>Review 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>This is my first iPad and I just absolutely love it!!! I previously owned a tablet but this by far, beats the tablet I had!! It is so easy to use and the retina is amazing! I now understand why people love their iPad! ...</td>
<td>Poor quality control. Found the corners at the edges where the screen meets the body, to be crimped on each side...</td>
</tr>
</tbody>
</table>

free text is referred to as unstructured data
Sentiment Analysis

Two ipad reviews: do they **like** or **dislike** the product?

<table>
<thead>
<tr>
<th>Review 1</th>
<th>Review 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>This is my first iPad and I just absolutely love it!!! I previously owned a tablet but this by far, beats the tablet I had!! It is so easy to use and the retina is amazing! I now understand why people love their iPad! ...</td>
<td>Poor quality control. Found the corners at the edges where the screen meets the body, to be crimped on each side...</td>
</tr>
</tbody>
</table>

free text is referred to as unstructured data
Structured Data Example

A table or relational database

<table>
<thead>
<tr>
<th>Gender</th>
<th>Systolic BP</th>
<th>Weight</th>
<th>Disease Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>175</td>
<td>65</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>141</td>
<td>72</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>F</td>
<td>160</td>
<td>59</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure: Example of Medical Data Prediction
Structured versus Unstructured Data

- **Structured data:**
 - table or spreadsheet
 - relational database with well-defined attributes (features)
 - features are usually dense

- **Unstructured data**
 - free format text
 - without well-defined attributes
Structured versus Unstructured Data

- **Structured data:**
 - table or spreadsheet
 - relational database with well-defined attributes (features)
 - features are usually dense

- **Unstructured data**
 - free format text
 - without well-defined attributes

- **Learning:** extract information, find patterns, organize contents
 - encode desired information into unknown labels to predict (output).
 - encode available unstructured data into sparse feature vector
 - combine structured and unstructured data
Goal: represent text by a feature vector
Method: vector space model
- create dictionary of size m consisted of all words
- map each document into an m-dimensional vector
 - the i-th component is the frequency of word i in the document
 - feature vector is very sparse and high dimensional

Bag-of-words (BoW): represent text without word ordering info
Improvements
- can preserve section or partial position information.
- can combine multiple dictionaries and use phrases
Bag of Word Document Representation

<table>
<thead>
<tr>
<th>term</th>
<th>word1</th>
<th>word2</th>
<th>word3</th>
<th>word4</th>
<th>word5</th>
<th>...</th>
<th>wordN</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>...</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>...</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>...</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>...</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>...</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Figure: Document BoW Representation
Term Weighting

- Modify each word count by the perceived importance of the word

$$\text{tf-idf}(j, d) = \text{tf}(j, d) \times \text{idf}(j)$$

$$\text{idf}(j) = \log \left(\frac{\text{number of documents}}{\text{df}(j)} \right)$$

$$\text{tf}(j, d)$$: term frequency of token j in document d
Term Weighting

- Modify each word count by the perceived importance of the word
- Rare words carry more information than common words
- TFIDF weighting of token j in document d:

$$\text{tf-idf}(j, d) = \text{tf}(j, d) \times \text{idf}(j)$$

$$\text{idf}(j) = \log \left(\frac{\text{number of documents}}{\text{df}(j)} \right)$$

- $\text{tf}(j, d)$: term frequency of token j in document d
- $\text{df}(j)$: frequency of documents containing term j
Feature representation
- bag-of-word binary feature representation of email text without TFIDF
- using known spam host as nontext features

Text feature versus nontext feature
- text feature: sparse BoW representation, linear classifier works well
- nontext feature: dense and heterogeneous, often needs non-linear interaction

<table>
<thead>
<tr>
<th>text:title</th>
<th>text:body</th>
<th>nontext</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>cheap</td>
<td>enlargement</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>yes</td>
<td>yes</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>no</td>
<td>yes</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>no</td>
<td>no</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Webpage Classification

Problem: determine the topics of a webpage
- does it talks about arts, finance, sports?
- is it a personal homepage, university department page, etc?

Features:
- text (BoW)
- HTML tag
- url
- page layout and images
- links

How to combine features
- integrate different information source into a unified feature representation
- propagate features or class labels through links

Modify standard algorithms
Classify each query into a tree-structured taxonomy
- Apparel and Jewelry/Shoes/Womens Shoes
- Mass Merchants/Baby Products
- ...
Classify each query into a tree-structured taxonomy

- Apparel and Jewelry/Shoes/Womens Shoes
- Mass Merchants/Baby Products
- ...

Challenges

- Large scale: approximately 6000 nodes
- Difficulty:
 - queries are brief: average 2.4 to 2.7 words per query
 - query words alone don’t provide sufficient information for good query classification

- Solution: employ auxiliary knowledge to augment the queries
Classify each query into a tree-structured taxonomy
- Apparel and Jewelry/Shoes/Womens Shoes
- Mass Merchants/Baby Products
- ...

Challenges
- Large scale: approximately 6000 nodes
- Difficulty:
 - queries are brief: average 2.4 to 2.7 words per query
 - query words alone don’t provide sufficient information for good query classification
- Solution: employ auxiliary knowledge to augment the queries

Auxiliary Knowledge
- Send query to a major search engine
- Augment the query using top pages returned by the search engine.
- Remedy the problem of query brevity:
 - words contained in top results pages reveal the category
Query: nikon
Top search result pages contain: camera, photography, lens, ...
These augmented words imply “Digital Camera” as a category.
Can provide matching ads about digital cameras.
Search based Query Classification

- Notations:
 - \(q \): query, \(p \): web-page, \(C = \{ C_j \} \): set of categories

- Problem: given query \(q \), want to find \(s(q, C_j) \)
 - \(s(q, C_j) \) is the quality score of query \(q \) belonging to category \(C_j \).
Search based Query Classification

- Notations:
 - \(q \): query, \(p \): web-page, \(C = \{ C_j \} \): set of categories

- Problem: given query \(q \), want to find \(s(q, C_j) \)

- Information source:
 - top-search results containing pages \(p_1, \ldots, p_k \) with high relevance to \(q \)
 - \(s(p, C_j) \): quality score of page \(p \) belonging to category \(C_j \)

\(s(q, C_j) \) is the quality score of query \(q \) belonging to category \(C_j \).
Search based Query Classification

Notations:
- \(q \): query,
- \(p \): web-page,
- \(C = \{ C_j \} \): set of categories

Problem: given query \(q \), want to find \(s(q, C_j) \)
- \(s(q, C_j) \) is the quality score of query \(q \) belonging to category \(C_j \).

Information source:
- top-search results containing pages \(p_1, \ldots, p_k \) with high relevance to \(q \)
- \(s(p, C_j) \): quality score of page \(p \) belonging to category \(C_j \)
 known through a separate web-page classifier.

Information aggregation:
- voting:

\[
 s(q, C_j) = \frac{\sum_{i=1}^{k} s(p_i, C_j)}{k},
\]

where \(p_i \) is the \(i \)-th ranked page for query \(q \).
- several other methods
Performance Evaluation

- small number of positive examples, most data are negative
- precision, recall, and F-measure

\[
\text{precision} = \frac{\text{number of correct positive predictions}}{\text{number of positive predictions}},
\]

\[
\text{recall} = \frac{\text{number of correct positive predictions}}{\text{number of positive class documents}},
\]

\[
F\text{-measure} = \frac{2}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}}
\]
Effect of using Search Results

![Graph showing precision and recall for different search engines: Baseline, Engine A full-page, Engine A summary, Engine B full-page, Engine B summary. The graph indicates that Engine B summary has the highest precision and recall compared to other options.]
Ranking

- Rank a set of items and display to users in corresponding order.
- Important in web-search:
 - web-page ranking
 - display ranked pages for a query
 - query-refinement and spelling correction
 - display ranked suggestions and candidate corrections
 - web-page summary
 - display ranked sentence segments
- related: crawling/indexing:
 - which page to crawl first
 - pages to keep in the index: priority/quality
Web-Search Problem

- User types a query, search engine returns a result page:
 - select pages from billions of pages.

- Method: given a query
 - search engine assign a relevance score for each page
 - return pages ranked by the scores.

- Quality of search engine:
 - relevance (whether returned pages are on topic and authoritative)
 - presentation issues (diversity, perceived relevance, etc)
 - personalization (predict user specific intention)
 - coverage (size and quality of index).
 - freshness (whether contents are timely).
 - responsiveness (how quickly search engine responds to the query).
 - ...

T. Zhang (Rutgers)
Web-Search Problem

- User types a query, search engine returns a result page:
 - select pages from billions of pages.
- Method: given a query
 - search engine assign a relevance score for each page
 - return pages ranked by the scores.
- Quality of search engine:
 - relevance (whether returned pages are on topic and authoritative)
 - presentation issues (diversity, perceived relevance, etc)
 - personalization (predict user specific intention)
 - coverage (size and quality of index).
 - freshness (whether contents are timely).
 - responsiveness (how quickly search engine responds to the query).
 - ...
Web-Search Ranking: Notations

Notation:
- q: query
- p: webpage
- $y(p, q)$: true relevance of page p to query q rated by human
- $x(p, q)$: search engine creates a feature for page p and query q
- $f(x(p, q))$: search engine assigns a quality score $f(x(p, q))$

Web-search process:
- user input query q
- search engine returns page p ordered by highest scores $f(x(p, q))$
Training:
- randomly select queries q, and web-pages p for each query.
- use editorial judgment to assign relevance grade $y(p, q)$.
- construct a feature $x(p, q)$ for each query/page pair.
- learn scoring function $\hat{f}(x(p, q))$ to preserve the order of $y(p, q)$ for each q.

Deployment:
- query q comes in.
- return pages p_1, \ldots, p_m in descending order of $\hat{f}(x(p, q))$.
Measuring Ranking Quality

- Given scoring function \hat{f}, return ordered page-list p_1, \ldots, p_m for a query q.
- only the order information is important.
- should focus on the relevance of returned pages near the top.
- DCG (discounted cumulative gain) with decreasing weight c_i

\[
\text{DCG}(\hat{f}, q) = \sum_{j=1}^{m} c_i r(p_j, q).
\]

- c_i: reflects effort (or likelihood) of user clicking on the i-th position.
The quality of ranking only depends on the relative order of \(\{ f(x(p_i, q)) : i \} \) for each query \(q \)

Preference relationship: if \(y(p_i, q) < y(p_j, q) \)

\[x(p_i, q) \prec x(p_j, q) \]

\(p_j \) is more relevant than \(p_i \) for query \(q \)

Pairwise preference learning

- learn a scoring function \(f \) for items to preserve preference \(\prec \).
- two items \(x \) and \(x' \): \(f(x) < f(x') \) when \(x \prec x' \).
- ordering inputs according to \(f(x) \).
Example Loss Function for Preference Learning

Training data: query-url features x_i for $i = 1, \ldots, n$

- $i \prec j$ if url of x_j is more relevant than url of x_i for a certain query q.
- Let S be the indices of preference relationships $i \prec j$
- Let $f(X) = [f(x_1), \ldots, f(x_n)]$

Example loss:

$$
\mathcal{R}(f(X)) = \sum_{\{i \prec j\} \in S} \max(0, 1 + f(x_i) - f(x_j))^2
$$
Let $f(x) = 0$
Iterate $t = 1, 2, \ldots$
 - For each $i = 1, \ldots, n$, compute
 \[
 r_i = \frac{\partial}{\partial f_i} R(f) = 2 \sum_{\{i < k\} \in S} \max(0, 1 + f(x_i) - f(x_k)) - 2 \sum_{\{k < i\} \in S} \max(0, 1 + f(x_k) - f(x_i))
 \]
 - Find decision tree g_t that approximately minimizes
 \[
 \min \sum_{i=1}^{n} \|g(x_i) - r_i\|_2^2
 \]
 using a regression tree algorithm.
 - Pick η_t and let
 \[
 f(x) \leftarrow f(x) - \eta_t g_t(x)
 \]
An Application of Preference Learning in Web-search

- A Web-search dataset: determine the relevancy of (query, url) pair
- GBrank: boosted tree based on preference learning
- GBDT: boosted tree based on regression
- RankSVM: SVM based on preference learning

Table: Precision at $K\%$ for GBrank, GBT, and RankSVM

<table>
<thead>
<tr>
<th>%K</th>
<th>GBrank</th>
<th>GBDT</th>
<th>RankSVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>0.9867</td>
<td>0.9243</td>
<td>0.8524</td>
</tr>
<tr>
<td>20%</td>
<td>0.9722</td>
<td>0.8833</td>
<td>0.8152</td>
</tr>
<tr>
<td>50%</td>
<td>0.8638</td>
<td>0.7814</td>
<td>0.7357</td>
</tr>
<tr>
<td>100%</td>
<td>0.7225</td>
<td>0.6742</td>
<td>0.6465</td>
</tr>
</tbody>
</table>
Summary

- Many machine learning problems on the web
- Many information sources
- Challenges:
 - how to formulate the problems
 - how to generate features
 - how to aggregate information
 - how to adapt learning models
 - how to control data quality
 - how to evaluate performance
 - how to handle large scale computing
 - ...